Precision electroweak data are generally believed to constrain the Higgs boson mass to lie below approximately 190 GeV at 95% confidence level. The standard Higgs model is, however, trivial and can only be an effective field theory valid below some high energy scale characteristic of the underlying non-trivial physics. Corrections to the custodial isospin violating parameter T arising from interactions at this higher energy scale dramatically enlarge the allowed range of Higgs mass. We perform a fit to precision electroweak data and determine the region in the (m H , ∆T ) plane that is consistent with experimental results. Overlaying the estimated size of corrections to T arising from the underlying dynamics, we find that a Higgs mass up to 500 GeV is allowed. We review two composite Higgs models which can realize the possibility of a phenomenologically acceptable heavy Higgs boson. We comment on the potential of improvements in the measurements of m t and M W to improve constraints on composite Higgs models.
We perform an investigation of the static quark-quark-potential both in the confined and the deconfined phase. We discuss conceptual and technical problems and present first results of an exploratory numerical investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.