A bottom-up process from precursor
development for tin to plasma-enhanced
atomic layer deposition (PEALD) for tin(IV) oxide and its successful
implementation in a working thin-film transistor device is reported.
PEALD of tin(IV) oxide thin films at low temperatures down to 60 °C
employing tetrakis-(dimethylamino)propyl tin(IV) [Sn(DMP)4] and oxygen plasma
is demonstrated. The liquid precursor has been synthesized and thoroughly
characterized with thermogravimetric analyses, revealing sufficient
volatility and long-term thermal stability. [Sn(DMP)4]
demonstrates typical saturation behavior and constant growth rates
of 0.27 or 0.42 Å cycle–1 at 150 and 60 °C,
respectively, in PEALD experiments. Within the ALD regime, the films
are smooth, uniform, and of high purity. On the basis of these promising
features, the PEALD process was optimized wherein a 6 nm thick tin
oxide channel material layer deposited at 60 °C was applied in
bottom-contact bottom-gate thin-film transistors, showing a remarkable
on/off ratio of 107 and field-effect mobility of μFE ≈ 12 cm2 V–1 s–1 for the as-deposited thin films deposited at such low temperatures.
A study on the plasma-enhanced atomic layer deposition of amorphous inorganic oxides SiO and AlO on polypropylene (PP) was carried out with respect to growth taking place at the interface of the polymer substrate and the thin film employing in situ quartz-crystal microbalance (QCM) experiments. A model layer of spin-coated PP (scPP) was deposited on QCM crystals prior to depositions to allow a transfer of findings from QCM studies to industrially applied PP foil. The influence of precursor choice (trimethylaluminum (TMA) vs [3-(dimethylamino)propyl]-dimethyl aluminum (DMAD)) and of plasma pretreatment on the monitored QCM response was investigated. Furthermore, dyads of SiO/AlO, using different Al precursors for the AlO thin-film deposition, were investigated regarding their barrier performance. Although the growth of SiO and AlO from TMA on scPP is significantly hindered if no oxygen plasma pretreatment is applied to the scPP prior to depositions, the DMAD process was found to yield comparable AlO growth directly on scPP similar to that found on a bare QCM crystal. From this, the interface formed between the AlO and the PP substrate is suggested to be different for the two precursors TMA and DMAD due to different growth modes. Furthermore, the residual stress of the thin films influences the barrier properties of SiO/AlO dyads. Dyads composed of 5 nm AlO (DMAD) + 5 nm SiO exhibit an oxygen transmission rate (OTR) of 57.4 cm m day, which correlates with a barrier improvement factor of 24 against 5 when AlO from TMA is applied.
The effect of the selection of hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDSN) as a precursor in a microwave driven low pressure plasma on the deposition of silicon oxide barrier coatings and silicon based organic interlayers on polyethylene terephthalate (PET) and polypropylene (PP) substrates is investigated. Mass spectrometry is used to quantify the absolute gas density and the degree of depletion of neutral precursor molecules under variation of oxygen admixture. On average, HMDSN shows a smaller density, a higher depletion and the production of smaller fragments. Subsequently, this is correlated with barrier performance and chemical structure as a function of barrier layer thickness and oxygen admixture on PET. For this purpose, the oxygen transmission rate (OTR) is measured and Fourier transformed infrared (FTIR) spectroscopy as well as x-ray photoelectron spectroscopy (XPS) is performed. HMDSN based coatings exhibit significantly higher barrier performances for high admixtures of oxygen (200 sccm). In comparison to HMDSO based processes, however, a higher supply of oxygen is necessary to achieve a sufficient degree of oxidation, cross-linking and, therefore, barrier performance. FTIR and XPS reveal a distinct carbon content for low oxygen admixtures (10 and 20 sccm) in case of HMDSN based coatings. The variation of interlayer thickness also reveals significantly higher OTR for HMDSO based coatings on PET and PP. Barrier performance of HMDSO based coatings improves with increasing interlayer thickness up to 10 nm for PET and PP. HMDSN based coatings exhibit a minimum of OTR without interlayer on PP and for 2 nm interlayer thickness on PET. Furthermore, HMDSN based coatings show distinctly higher bond strengths to the PP substrate.
The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiOx) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiOx network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.