The technology to generate autologous pluripotent stem cells (iPS cells) from almost any somatic cell type has brought various cell replacement therapies within clinical research. Besides the challenge to optimize iPS protocols to appropriate safety and GMP levels, procedures need to be developed to differentiate iPS cells into specific fully differentiated and functional cell types for implantation purposes. In this article, we describe a protocol to differentiate mouse iPS cells into oligodendrocytes with the aim to investigate the feasibility of IPS stem cell-based therapy for demyelinating disorders, such as multiple sclerosis. Our protocol results in the generation of oligodendrocyte precursor cells (OPCs) that can develop into mature, myelinating oligodendrocytes in-vitro (co-culture with DRG neurons) as well as in-vivo (after implantation in the demyelinated corpus callosum of cuprizone-treated mice). We report the importance of complete purification of the iPS-derived OPC suspension to prevent the contamination with teratoma-forming iPS cells.
The human epidermal growth factor receptor-2 (HER2/neu/ERBB2) is overexpressed in several cancer types. Although therapies targeting the HER2/neu protein result in inhibition of cell proliferation, the anticancer effect might be further optimized by limiting HER2/neu expression at the DNA level. Towards this aim, epigenetic editing was performed to suppress HER2/neu expression by inducing epigenetic silencing marks on the HER2/neu promoter.HER2/neu expression and HER2/neu promoter epigenetic modification status were determined in a panel of ovarian and breast cancer cell lines. HER2/neu-overexpressing cancer cells were transduced to express a zinc finger protein (ZFP), targeting the HER2/neu gene, fused to histone methyltransferases (G9a, SUV39-H1)/super KRAB domain (SKD). Epigenetic assessment of the HER2/neu promoter showed that HER2/neu-ZFP fused to G9a efficiently induced the intended silencing histone methylation mark (H3K9me2). Importantly, H3K9me2 induction was associated with a dramatic downregulation of HER2/neu expression in HER2/neu-overexpressing cells. Downregulation by SKD, traditionally considered transient in nature, was associated with removal of the histone acetylation mark (H3ac). The downregulation of HER2/neu by induced H3K9 methylation and/or reduced H3 acetylation was sufficient to effectively inhibit cellular metabolic activity and clonogenicity. Furthermore, genome-wide analysis indicated preferential binding of the ZFP to its target sequence. These results not only show that H3K9 methylation can be induced but also that this epigenetic mark was instructive in promoting downregulation of HER2/neu expression.
Despite the crucial physiological processes governed by neurons in the hypothalamic arcuate nucleus (ARC), such as growth, reproduction and energy homeostasis, the developmental pathways and regulators for ARC neurons remain understudied. Our single cell RNA-seq analyses of mouse embryonic ARC revealed many cell type-specific markers for developing ARC neurons. These markers include transcription factors whose expression is enriched in specific neuronal types and often depleted in other closely-related neuronal types, raising the possibility that these transcription factors play important roles in the fate commitment or differentiation of specific ARC neuronal types. We validated this idea with the two transcription factors, Foxp2 enriched for Ghrh-neurons and Sox14 enriched for Kisspeptin-neurons, using Foxp2- and Sox14-deficient mouse models. Taken together, our single cell transcriptome analyses for the developing ARC uncovered a panel of transcription factors that are likely to form a gene regulatory network to orchestrate fate specification and differentiation of ARC neurons.
Weight loss and anorexia are common symptoms in cancer patients that occur prior to initiation of cancer therapy. Inflammation in the brain is a driver of these symptoms, yet cellular sources of neuroinflammation during malignancy are unknown. In a mouse model of pancreatic ductal adenocarcinoma (PDAC), we observed early and robust myeloid cell infiltration into the brain. Infiltrating immune cells were predominately neutrophils, which accumulated at a unique central nervous system entry portal called the velum interpositum, where they expressed CCR2. Pharmacologic CCR2 blockade and genetic deletion of Ccr2 both resulted in significantly decreased brain-infiltrating myeloid cells as well as attenuated cachexia during PDAC. Lastly, intracerebroventricular blockade of the purinergic receptor P2RX7 during PDAC abolished immune cell recruitment to the brain and attenuated anorexia. Our data demonstrate a novel function for the CCR2/CCL2 axis in recruiting neutrophils to the brain, which drives anorexia and muscle catabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.