Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP+ cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP+ cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I–expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.
Neutrophil granulocytes are rapidly recruited from the bloodstream to the site of acute inflammation where they die in large numbers. Because release of toxic substances from dead neutrophils can propagate the inflammatory response leading to tissue destruction, clearance of dying inflammatory neutrophils has a critical function in the resolution of the inflammatory response. Apoptotic neutrophils are phagocytosed primarily by macrophages, provided these cells are present in adequate numbers. However, macrophages are rare at sites of acute inflammation, whereas the number of neutrophils can be extremely high. In the current study, in vitro experiments with human neutrophils were carried out to investigate whether neutrophils can ingest apoptotic neutrophils. We show that naïve granulocytes isolated from venous blood have a limited capacity to phagocytose apoptotic cells. However, exposure to activating stimuli such as LPS, GM-CSF and/or IFN-γ results in enhanced phagocytosis of apoptotic cells. The efficient uptake of apoptotic cells by neutrophils was found to depend on the presence of heat labile serum factors. Importantly, the contact to or uptake of apoptotic cells inhibited neutrophil functions such as respiratory burst and the release of the proinflammatory cytokines TNF-α and interferon-inducible protein-10. Contact to apoptotic cells, however, induced the secretion of IL-8 and growth-related oncogene-α, which was independent of NF-κB and p38 MAPK but involved C5a and the ERK1/2 pathway. The data suggest that activated neutrophils participate in the clearance of apoptotic cells. In addition, because apoptotic cells inhibit proinflammatory functions of neutrophils, uptake of apoptotic cells by neutrophils contributes to the resolution of inflammation.
Immunogenic tumors grow progressively even when heavily infiltrated by CD8+ T cells. We investigated how to rescue CD8+ T cell function in long-established immunogenic melanomas that contained a high percentage of endogenous PD-1+ tumor-specific CD8+ T cells that were dysfunctional. Treatment with αPD-L1 and αCTLA-4 blocking antibodies did not prevent tumors from progressing rapidly. We then tested exogenous tumor-specific antigen delivery into tumors using Salmonella Typhimurium A1-R to increase antigen levels and generate a proinflammatory tumor microenvironment. Antigen-producing A1-R rescued the endogenous tumor-specific CD8+ T cell response: proliferation was induced in the lymphoid organs and effector function was recovered in the tumor. Treatment with antigen-producing A1-R led to improved mouse survival and resulted in 32% rejection of long-established immunogenic melanomas. Following treatment with antigen-producing A1-R, the majority of tumor-specific CD8+ T cells still expressed a high level of PD-1 in the tumor. Combining antigen-producing A1-R with αPD-L1 blocking antibody enhanced the expansion of tumor-specific CD8+ T cells and resulted in 80% tumor rejection. Collectively, these data demonstrate a powerful new therapeutic approach to rescue dysfunctional endogenous tumor-specific CD8+ T cells and eradicate advanced immunogenic tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.