Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this series (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, "lower limit", "nominal value" and "upper limit" of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters µ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this series (Paper III). In the fourth paper of this series (Paper IV) we compare our new reaction rates to previous results.
Proton-induced reaction rates on 26 stable and 29 unstable target nuclei in the mass A \ 20È40 region have been evaluated and compiled. Recommended reaction rates, assuming that all interacting nuclei are in the ground state, are presented in tabular form on a temperature grid in the range T \ 0.01È10.0 GK. Most reaction rates involving stable targets were normalized to a set of measured standard resonance strengths in the sd shell. For the majority of reaction rates, experimental information from transfer reaction studies has been used consistently. Our results are compared with recent statistical model (HauserFeshbach) calculations. Reaction rate uncertainties are presented and amount to several orders of magnitude for many of the reactions. Several of these reaction rates and/or their corresponding uncertainties deviate from results of previous compilations. In most cases, the deviations are explained by the fact that new experimental information became available recently. Examples are given for calculating reaction rates and reverse reaction rates for thermally excited nuclei from the present results. The survey of literature for this review was concluded in 2000 August.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.