µ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the CRYM gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations in CRYM can result in non-syndromic deafness, while its aberrant expression, predominantly in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% of individuals expressing ≥13 fold more CRYM mRNA than the median level. Ablation of the Crym gene in murine models results in the hypertrophy of fast twitch muscle fibers and an increase in fat mass of mice fed a high fat diet. Overexpression of Crym in mice causes a shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via β-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The history, attributes, functions, and diseases associated with CRYM, an important modulator of metabolism, are reviewed.
μ-Crystallin, encoded by the CRYM gene, binds the thyroid hormones, T 3 and T 4 . Because T 3 and T 4 are potent regulators of metabolism and gene expression, and CRYM levels in human skeletal muscle can vary widely, we investigated the effects of overexpression of Crym . We generated transgenic mice, Crym tg, that expressed Crym protein specifically in skeletal muscle at levels 2.6–147.5 fold higher than in controls. Muscular functions, Ca 2+ transients, contractile force, fatigue, running on treadmills or wheels, were not significantly altered, although T 3 levels in tibialis anterior (TA) muscle were elevated ~190-fold and serum T 4 was decreased 1.2-fold. Serum T 3 and thyroid stimulating hormone (TSH) levels were unaffected. Crym transgenic mice studied in metabolic chambers showed a significant decrease in the respiratory exchange ratio (RER) corresponding to a 13.7% increase in fat utilization as an energy source compared to controls. Female but not male Crym tg mice gained weight more rapidly than controls when fed high fat or high simple carbohydrate diets. Although labeling for myosin heavy chains showed no fiber type differences in TA or soleus muscles, application of machine learning algorithms revealed small but significant morphological differences between Crym tg and control soleus fibers. RNA-seq and gene ontology enrichment analysis showed a significant shift towards genes associated with slower muscle function and its metabolic correlate, β-oxidation. Protein expression showed a similar shift, though with little overlap. Our study shows that μ-crystallin plays an important role in determining substrate utilization in mammalian muscle and that high levels of μ-crystallin are associated with a shift toward greater fat metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.