SummaryMature body size is genetically correlated with growth rate, an important economic trait in the sheep industry. Mature body size has been studied extensively in humans as well as cattle and other domestic animal populations but not in sheep. Six‐hundred and sixteen ewes, across 22 breeds, were measured for 28 linear measurements representing various skeletal parts. PCA from these measures generated principal components 1 and 2 which represented 66 and 7% of the phenotypic variation respectively. Two‐hundred and twenty sheep were genotyped on the Illumina Ovine HD beadchip for a GWAS investigating mature body size and linear body measurements. Forty‐six (Bonferroni P < 0.05) SNP associations across 14 chromosomes were identified utilizing principal component 1, representing overall body size, revealing mature body size to have fewer loci of large effect than other domestic species such as dogs and horses. Genome‐wide associations for individual linear measures identified major quantitative trait loci for withers height and ear length. Withers height was associated (Bonferroni P < 0.05) with 12 SNPs across six chromosomes whereas ear length was associated with a single locus on chromosome 3, containing MSRB3. This analysis identified several loci known to be associated with mature body size in other species such as NCAPG, LCORL, and HMGA2. Mature body size is more polygenic in sheep than other domesticated species, making the development of genomic selection for the trait the most efficient option for maintaining or reducing mature body size in sheep.
Equine obesity can cause life-threatening secondary chronic conditions, similar to those in humans and other animal species. Equine metabolic syndrome (EMS), primarily characterized by hyperinsulinemia, is often present in obese horses and ponies. Due to clinical similarities to conditions such as pituitary pars intermedia dysfunction (formerly equine Cushing's disease), conclusive diagnosis of EMS often proves challenging. Aside from changes in diet and exercise, few targeted treatments are available for EMS, emphasizing the need for early identification of at-risk individuals to enable implementation of preventative measures. A genomewide association study (GWAS) using Arabian horses with a history of severe laminitis secondary to EMS revealed significant genetic markers near a single candidate gene () that may play a role in cholesterol homeostasis. The best marker, BIEC2-263524 (chr14:69276814 T > C), was correlated with elevated insulin values and increased frequency of laminitis ( = 0.0024 and = 9.663 × 10, respectively). In a second population of Arabian horses, the BIEC2-263524 marker maintained its associations with higher modified insulin-to-glucose ratio (MIRG) values ( = 0.0056) and BCS ( = 0.0063). Screening of the predicted coding regions by sequencing identified a polymorphic guanine homopolymer and 5 haplotypes in the 3' untranslated region (UTR). An 11 guanine (11-G) allele at was correlated with elevated insulin values in the GWAS population ( = 0.0008) and, in the second population, elevated MIRG and increased BCS > 6.5 ( = 0.0055 and = 0.0162, respectively). The BIEC2-263524-C and the 3' UTR -11(G) polymorphisms were correlated at a 98% frequency, indicating strong linkage disequilibrium across this 150-kb haplotype. Assays for these markers could diagnose horses with a genetic predisposition to develop obesity. Additionally, discovery of FAM174A function may improve our understanding of the etiology of this troubling illness in the horse and warrants investigation of this locus for a role in metabolic- and obesity-related disorders of other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.