In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdetermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real field codes. Contrary to previous methods, which usually solve this problem by minimizing the ℓ 1 norm using Linear Programming (LP) techniques, our algorithm tries to directly minimize the ℓ 0 norm. It is experimentally shown that the proposed algorithm is about two to three orders of magnitude faster than the state-of-the-art interior-point LP solvers, while providing the same (or better) accuracy.
This paper presents a new classification framework for brain-computer interface (BCI) based on motor imagery. This framework involves the concept of Riemannian geometry in the manifold of covariance matrices. The main idea is to use spatial covariance matrices as EEG signal descriptors and to rely on Riemannian geometry to directly classify these matrices using the topology of the manifold of symmetric and positive definite (SPD) matrices. This framework allows to extract the spatial information contained in EEG signals without using spatial filtering. Two methods are proposed and compared with a reference method [multiclass Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA)] on the multiclass dataset IIa from the BCI Competition IV. The first method, named minimum distance to Riemannian mean (MDRM), is an implementation of the minimum distance to mean (MDM) classification algorithm using Riemannian distance and Riemannian mean. This simple method shows comparable results with the reference method. The second method, named tangent space LDA (TSLDA), maps the covariance matrices onto the Riemannian tangent space where matrices can be vectorized and treated as Euclidean objects. Then, a variable selection procedure is applied in order to decrease dimensionality and a classification by LDA is performed. This latter method outperforms the reference method increasing the mean classification accuracy from 65.1% to 70.2%.
This paper provides an overview of the main challenges in multimodal data fusion across various disciplines and addresses two key issues: ''why we need data fusion'' and ''how we perform it.'' ABSTRACT | In various disciplines, information about the same phenomenon can be acquired from different types of detectors, at different conditions, in multiple experiments or subjects, among others. We use the term ''modality'' for each such acquisition framework. Due to the rich characteristics of natural phenomena, it is rare that a single modality provides complete knowledge of the phenomenon of interest. The increasing availability of several modalities reporting on the same system introduces new degrees of freedom, which raise questions beyond those related to exploiting each modality separately. As we argue, many of these questions, or ''challenges,'' are common to multiple domains. This paper deals with two key issues: ''why we need data fusion'' and ''how we perform it.''The first issue is motivated by numerous examples in science and technology, followed by a mathematical framework that showcases some of the benefits that data fusion provides. In order to address the second issue, ''diversity'' is introduced as a key concept, and a number of data-driven solutions based on matrix and tensor decompositions are discussed, emphasizing how they account for diversity across the data sets. The aim of this paper is to provide the reader, regardless of his or her community of origin, with a taste of the vastness of the field, the prospects, and the opportunities that it holds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.