SUMMARYOsmotic balance in fish is maintained through the coordinated regulation of water and ion transport performed by epithelia in intestine, kidney and gill. In the current study, six aquaporin (AQP) isoforms found in Atlantic salmon (Salmo salar) were classified and their tissue specificity and mRNA expression in response to a hyperosmotic challenge and during smoltification were examined. While AQP-1a was generic, AQP-1b had highest expression in kidney and AQP-3 was predominantly found in oesophagus, gill and muscle. Two novel teleost isoforms, AQP-8a and -8b, were expressed specifically in liver and intestinal segments, respectively. AQP-10 was predominantly expressed in intestinal segments, albeit at very low levels. Transfer from freshwater (FW) to seawater (SW) induced elevated levels of intestinal AQP-1a, -1b and -8b mRNA, whereas only AQP-8b was stimulated during smoltification. In kidney, AQP-1a, -3 and -10 were elevated in SW whereas AQP-1b was reduced compared with FW levels. Correspondingly, renal AQP-1a and -10 peaked during smoltification in April and March, respectively, as AQP-1b and AQP-3 declined. In the gill, AQP-1a and AQP-3 declined in SW whereas AQP-1b increased. Gill AQP-1a and -b peaked in April, whereas AQP-3 declined through smoltification. These reciprocal isoform shifts in renal and gill tissues may be functionally linked with the changed role of these organs in FW compared with SW. The presence and observed dynamics of the AQP-8b isoform specifically in intestinal sections suggest that this is a key water channel responsible for water uptake in the intestinal tract of seawater salmonids.
It is increasingly clear that alterations in Na+-K+-ATPase kinetics to fit the demands in specialized cell types is vital for the enzyme to execute its different physiological roles in diverse tissues. In addition to tissue-dependent expression of isoforms of the conventional subunits, alpha and beta, auxiliary FXYD proteins appear to be essential regulatory components. The present study identified genes belonging to this family in Atlantic salmon by analysis of expressed sequence tags. Based on the conserved domain of these small membrane proteins, eight expressed FXYD isoforms were identified. Phylogenetic analysis suggests that six isoforms are homologues to the previously identified FXYD2, FXYD5, FXYD6, FXYD7, FXYD8, and FXYD9, while two additional isoforms were found (FXYD11 and FXYD12). Using quantitative PCR, tissue-dependent expression of the different isoforms was analyzed in gill, kidney, intestine, heart, muscle, brain, and liver. Two isoforms were expressed in several tissues (FXYD5 and FXYD9), while six isoforms were distributed in a discrete manner. In excitable tissues, two isoforms were highly expressed in brain (FXYD6 and FXYD7) and one in skeletal muscle (FXYD8). In osmoregulatory tissues, one isoform was expressed predominantly in gill (FXYD11), one in kidney (FXYD2), and one equally in kidney and intestine (FXYD12). Expression of several FXYD genes in kidney and gill differed between fresh water and seawater salmon, suggesting significance during osmoregulatory adaptations. In addition to identifying novel FXYD isoforms, these studies are the first to show the tissue dependence in their expression and modulation by salinity in any teleosts.
In euryhaline teleosts, permeability changes in gill epithelia are essential during acclimation to changed salinity. This study examined expression patterns of branchial tight junction proteins called claudins, which are important determinants of ion selectivity and general permeability in epithelia. We identified Atlantic salmon genes belonging to the claudin family by screening expressed sequence tag libraries available at NCBI, and classification was performed with the aid of maximum likelihood analysis. In gill libraries, five isoforms (10e, 27a, 28a, 28b, and 30) were present, and quantitative PCR analysis confirmed tissue-specific expression in gill when compared with kidney, intestine, heart, muscle, brain, and liver. Expression patterns during acclimation of freshwater salmon to seawater (SW) and during the smoltification process were examined. Acclimation to SW reduced the expression of claudin 27a and claudin 30 but had no overall effect on claudin 28a and claudin 28b. In contrast, SW induced a fourfold increase in expression of claudin 10e. In accord, a peak in branchial claudin 10e was observed during smoltification in May, coinciding with optimal SW tolerance. Smoltification induced no significant changes in expression of the other isoforms. This study demonstrates the expression of an array of salmon claudin isoforms and shows that SW acclimation involves inverse regulation, in the gill, of claudin 10e vs. claudin 27a and 30. It is possible that claudin 10e is an important component of cation selective channels, whereas reduction in claudin 27a and 30 may change permeability conditions in favor of the ion secretory mode of the SW gill.
The dynamics of branchial Na(+),K(+),2Cl(-) cotransporter (NKCC) and Na(+),K(+)-ATPase (NKA) expression were investigated in brown trout and Atlantic salmon during salinity shifts and the parr-smolt transformation, respectively. In the brown trout, Western blotting revealed that NKCC and NKA abundance increased gradually and in parallel (30- and ten-fold, respectively) after transfer to seawater (SW). The NKA hydrolytic activity increased ten-fold after SW-transfer. Following back-transfer to fresh water (FW), the levels of both proteins and NKA activity decreased. The NKCC immunostaining in the gill of SW-acclimated trout was strong, and mainly localized in large cells in the filament and around the bases of the lamellae. In FW-acclimated trout, immunostaining was less intense and more diffuse. Partial cDNAs of the secretory NKCC1 isoform were cloned and sequenced from both brown trout and Atlantic salmon gills. Two differently sized transcripts were detected by Northern blotting in the gill but not in other osmoregulatory tissues (kidney, pyloric caeca, intestine). The abundance in the gill of these transcripts and of the associated NKCC protein increased four- and 30-fold, respectively, during parr-smolt transformation. The abundance of NKA alpha-subunit protein also increased in the gill during parr-smolt transformation though to a lesser extent than enzymatic activity (2.5- and eight-fold, respectively). In separate series of in vitro experiments, cortisol directly stimulated the expression of NKCC mRNA in gill tissue of both salmonids. The study demonstrates the coordinated regulation of NKCC and NKA proteins in the gill during salinity shifts and parr-smolt transformation of salmonids.
We identified and investigated the changes in expression of two gill Na C , K C -ATPase a-subunit isoforms (a-1a and a-1b) in relationship with salinity acclimation in a cichlid fish, Mozambique tilapia. Transfer of freshwater (FW)-acclimated fish to seawater (SW) resulted in a marked reduction in a-1a expression within 24 h and a significant increase in a-1b expression with maximum levels attained 7 days after the transfer. In contrast, transfer of SWacclimated fish to FW induced a marked increase in a-1a expression within 2 days, while a-1b expression decreased significantly after 14 days. Hypophysectomy resulted in a virtual shutdown of a-1a mRNA expression in both FW-and SW-acclimated fish, whereas no significant effect was observed in a-1b expression. Replacement therapy by ovine prolactin (oPrl) fully restored a-1a expression in FW-acclimated fish, while cortisol had a modest, but significant, stimulatory effect on a-1a expression. In hypophysectomized fish in SW, replacement therapy with oPrl alone or in combination with cortisol resulted in a marked increase in a-1a mRNA to levels far exceeding those observed in sham-operated fish. Expression of a-1b mRNA was unaffected by hormone treatment either in FW-acclimated fish or in SW-acclimated fish. The mRNA expression of fxyd-11, a regulatory Na C , K C -ATPase subunit, was transiently enhanced during both FW and SW acclimation. In hypophysectomized fish in FW, oPrl and cortisol stimulated fxyd-11 expression in a synergistic manner. The clear Prl dependence of gill a-1a expression may partially explain the importance of this hormone to hyperosmoregulation in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.