These data suggest that the increased ISV found in ADHD could be associated with response-end, rather than stimulus-end processes, in contrast to prevailing conceptions about the endophenotype. This mental chronometric approach may also be useful for exploring whether the existing lack of specificity of ISV to particular psychiatric conditions can be improved upon.
Increased intra-subject variability of reaction times (ISV-RT) is one of the most consistent findings in attention-deficit/hyperactivity disorder (ADHD). Although the nature of this phenomenon is still unclear, it has been hypothesised to reflect interference from the Default Mode Network (DMN). So far, ISV-RT has been operationally defined either as a frequency spectrum of the underlying RT time series, or as a measure of dispersion of the RT scores distribution. Here, we use a novel RT analysis framework to link these hitherto unconnected facets of ISV-RT by determining the sensitivity of different measures of RT dispersion to the frequency content of the underlying RT time series. N=27 patients with ADHD and N=26 healthy controls performed several visual N-back tasks. Different measures of RT dispersion were repeatedly modelled after individual frequency bands of the underlying RT time series had been either extracted or suppressed using frequency-domain filtering. We found that the intra-subject standard deviation of RT preserves the “1/f noise” characteristic typical of human RT data. Furthermore and most importantly, we found that the ex-Gaussian parameter τ is rather exclusively sensitive to frequencies below 0.025 Hz in the underlying RT time series and that the particularly slow RTs, which nourish τ, occur regularly as part of an quasi-periodic, ultra-slow RT fluctuation. Overall, our results are compatible with the idea that ISV-RT is modulated by an endogenous, slowly fluctuating process that may reflect DMN interference.
Increased intra-subject variability of reaction times (ISV-RT) is one of the most consistent findings in attention-deficit/ hyperactivity disorder (ADHD). Although the nature of this phenomenon is still unclear, it has been hypothesised to reflect interference from the Default Mode Network (DMN). So far, ISV-RT has been operationally defined either as a frequency spectrum of the underlying RT time series, or as a measure of dispersion of the RT scores distribution. Here, we use a novel RT analysis framework to link these hitherto unconnected facets of ISV-RT by determining the sensitivity of different measures of RT dispersion to the frequency content of the underlying RT time series. N=27 patients with ADHD and N=26 healthy controls performed several visual N-back tasks. Different measures of RT dispersion were repeatedly modelled after individual frequency bands of the underlying RT time series had been either extracted or suppressed using frequency-domain filtering. We found that the intra-subject standard deviation of RT preserves the "1/f noise" characteristic typical of human RT data. Furthermore and most importantly, we found that the ex-Gaussian parameter τ is rather exclusively sensitive to frequencies below 0.025 Hz in the underlying RT time series and that the particularly slow RTs, which nourish τ, occur regularly as part of an quasi-periodic, ultra-slow RT fluctuation. Overall, our results are compatible with the idea that ISV-RT is modulated by an endogenous, slowly fluctuating process that may reflect DMN interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.