We describe a new Type II congenital disorder of glycosylation (CDG-II) caused by mutations in the conserved oligomeric Golgi (COG) complex gene, COG8. The patient has severe psychomotor retardation, seizures, failure to thrive and intolerance to wheat and dairy products. Analysis of serum transferrin and total serum N-glycans showed normal addition of one sialic acid, but severe deficiency in subsequent sialylation of mostly normal N-glycans. Patient fibroblasts were deficient in sialylation of both N- and O-glycans, and also showed slower brefeldin A (BFA)-induced disruption of the Golgi matrix, reminiscent of COG7-deficient cells. Patient fibroblasts completely lacked COG8 protein and had reduced levels and/or mislocalization of several other COG proteins. The patient had two COG8 mutations which severely truncated the protein and destabilized the COG complex. The first, IVS3 + 1G > A, altered the conserved splicing site of intron 3, and the second deleted two nucleotides (1687-1688 del TT) in exon 5, truncating the last 47 amino acids. Lentiviral-mediated complementation with normal COG8 corrected mislocalization of other COG proteins, normalized sialylation and restored normal BFA-induced Golgi disruption. We propose to call this new disorder CDG-IIh or CDG-II/COG8.
The following study describes the discovery of a new inherited metabolic disorder, dolichol kinase (DK1) deficiency. DK1 is responsible for the final step of the de novo biosynthesis of dolichol phosphate. Dolichol phosphate is involved in several glycosylation reactions, such as N-glycosylation, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and C- and O-mannosylation. We identified four patients who were homozygous for one of two mutations (c.295T-->A [99Cys-->Ser] or c.1322A-->C [441Tyr-->Ser]) in the corresponding hDK1 gene. The residual activity of mutant DK1 was 2%-4% when compared with control cells. The mutated alleles failed to complement the temperature-sensitive phenotype of DK1-deficient yeast cells, whereas the wild-type allele restored the normal growth phenotype. Affected patients present with a very severe clinical phenotype, with death in early infancy. Two of the patients died from dilative cardiomyopathy.
Carbohydrate modification of proteins includes N-linked and O-linked glycosylation, proteoglycan formation, glycosylphosphatidylinositol anchor synthesis, and O-GlcNAc modification. Each of these modifications requires the sugar nucleotide UDP-GlcNAc, which is produced via the hexosamine biosynthesis pathway. A key step in this pathway is the interconversion of GlcNAc-6-phosphate (GlcNAc-6-P) and GlcNAc-1-P, catalyzed by phosphoglucomutase 3 (Pgm3). In this paper, we describe two hypomorphic alleles of mouse Pgm3 and show there are specific physiological consequences of a graded reduction in Pgm3 activity and global UDP-GlcNAc levels. Whereas mice lacking Pgm3 die prior to implantation, animals with less severe reductions in enzyme activity are sterile, exhibit changes in pancreatic architecture, and are anemic, leukopenic, and thrombocytopenic. These phenotypes are accompanied by specific rather than wholesale changes in protein glycosylation, suggesting that while universally required, the functions of certain proteins and, as a consequence, certain cell types are especially sensitive to reductions in Pgm3 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.