The energy spectrum of incompressible turbulence is known to reveal a pileup of energy at those high wavenumbers where viscous dissipation begins to act. It is called the bottleneck effect [10,11,16,26,47]. Based on direct numerical simulations of the incompressible Navier-Stokes equations, results from Donzis & Sreenivasan [10] pointed to a decrease of the strength of the bottleneck with increasing intensity of the turbulence, measured by the Taylor micro-scale Reynolds number R λ . Here we report first experimental results on the dependence of the amplitude of the bottleneck as a function of R λ in a wind-tunnel flow. We used an active grid [17] in the Variable Density Turbulence Tunnel (VDTT) [3] to reach R λ > 5000, which is unmatched in laboratory flows of decaying turbulence. The VDTT with the active grid permitted us to measure energy spectra from flows of different R λ , with the small-scale features appearing always at the same frequencies. We relate those spectra recorded to a common reference spectrum, largely eliminating systematic errors which plague hotwire measurements at high frequencies. The data are consistent with a power law for the decrease of the bottleneck strength for the finite range of R λ in the experiment. arXiv:1812.01370v2 [physics.flu-dyn]
We report a robust fabrication method for patterning freestanding Pt nanowires for use as thermal anemometry probes for small-scale turbulence measurements. Using e-beam lithography, high aspect ratio Pt nanowires (~300 nm width, ~70 µm length, ~100 nm thickness) were patterned on the surface of oxidized silicon (Si) wafers. Combining wet etching processes with dry etching processes, these Pt nanowires were successfully released, rendering them freestanding between two silicon dioxide (SiO2) beams supported on Si cantilevers. Moreover, the unique design of the bridge holding the device allowed gentle release of the device without damaging the Pt nanowires. The total fabrication time was minimized by restricting the use of e-beam lithography to the patterning of the Pt nanowires, while standard photolithography was employed for other parts of the devices. We demonstrate that the fabricated sensors are suitable for turbulence measurements when operated in constant-current mode. A robust calibration between the output voltage and the fluid velocity was established over the velocity range from 0.5 to 5 m s−1 in a SF6 atmosphere at a pressure of 2 bar and a temperature of 21 °C. The sensing signal from the nanowires showed negligible drift over a period of several hours. Moreover, we confirmed that the nanowires can withstand high dynamic pressures by testing them in air at room temperature for velocities up to 55 m s−1.
In windy conditions, the air is turbulent. The strong and intermittent velocity variations of turbulence are invisible to flying animals. Nevertheless, flying animals, not much larger than the smallest scales of turbulence, manage to maneuver these highly fluctuating conditions quite well. Here we quantify honeybee flight with time-resolved three-dimensional tracking in calm conditions and controlled turbulent winds. We find that honeybee mean speed and acceleration are only weakly correlated with the strength of turbulence. In flight, honeybees accelerate slowly and decelerate rapidly, i.e., they break suddenly during turns and then accelerate again. While this behavior is observed in both calm and turbulent conditions, it is increasingly dominant under turbulent conditions where short straight trajectories are broken by turns and increased maneuvering. This flight-crash behavior is reminiscent of turbulence itself. Our observations may help the development of flight strategies for miniature flying robotics under turbulent conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.