PACS. 83.50.Rp -Wall slip and apparent slip. PACS. 68.08.-p -Liquid-solid interfaces. PACS. 47.11.-j -Computational methods in fluid dynamics.Abstract. -Various experiments have found a boundary slip in hydrophobic microchannel flows, but a consistent understanding of the results is still lacking. While Molecular Dynamics (MD) simulations cannot reach the low shear rates and large system sizes of the experiments, it is often impossible to resolve the needed details with macroscopic approaches. We model the interaction between hydrophobic channel walls and a fluid by means of a multi-phase lattice Boltzmann model. Our mesoscopic approach overcomes the limitations of MD simulations and can reach the small flow velocities of known experiments. We reproduce results from experiments at small Knudsen numbers and other simulations, namely an increase of slip with increasing liquid-solid interactions, the slip being independent of the flow velocity, and a decreasing slip with increasing bulk pressure. Within our model we develop a semi-analytic approximation of the dependence of the slip on the pressure.
The ability of cells to sense and respond to physical forces has been recognized for decades, but researchers are only beginning to appreciate the fundamental importance of mechanical signals in biology. At the larger scale, there has been increased interest in the collective organization of cells and their ability to produce complex, "emergent" behaviors. Often, these complex behaviors result in tissue-level control mechanisms that manifest as biological oscillators, such as observed in fireflies, heartbeats, and circadian rhythms. In many cases, these complex, collective behaviors are controlled-at least in part-by physical forces imposed on the tissue or created by the cells. Here, we use mathematical simulations to show that two complementary mechanobiological oscillators are sufficient to control fluid transport in the lymphatic system: Ca 2+ -mediated contractions can be triggered by vessel stretch, whereas nitric oxide produced in response to the resulting fluid shear stress causes the lymphatic vessel to relax locally. Our model predicts that the Ca 2+ and NO levels alternate spatiotemporally, establishing complementary feedback loops, and that the resulting phasic contractions drive lymph flow. We show that this mechanism is self-regulating and robust over a range of fluid pressure environments, allowing the lymphatic vessels to provide pumping when needed but remain open when flow can be driven by tissue pressure or gravity. Our simulations accurately reproduce the responses to pressure challenges and signaling pathway manipulations observed experimentally, providing an integrated conceptual framework for lymphatic function.
Abstract. On microstructured hydrophobic surfaces, geometrical patterns may lead to the appearance of a superhydrophobic state, where gas bubbles at the surface can have a strong impact on the fluid flow along such surfaces. In particular, they can strongly influence a detected slip at the surface. We present two-phase lattice Boltzmann simulations of a flow over structured surfaces with attached gas bubbles and demonstrate how the detected slip depends on the pattern geometry, the bulk pressure, or the shear rate. Since a large slip leads to reduced friction, our results allow to assist in the optimization of microchannel flows for large throughput.
The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart–to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.