Fluorescence light observed from a single nitrogen-vacancy center in diamond exhibits strong photon antibunching: The measured pair correlation function g((2))(0) shows that only one photon is emitted at a time. Nitrogen-vacancy centers are well localized, stable against photobleaching even at room temperature, and can be addressed in simple experimental configurations.
We present the experimental detection of genuine multipartite entanglement using entanglement witness operators. To this aim we introduce a canonical way of constructing and decomposing witness operators so that they can be directly implemented with present technology. We apply this method to three-and four-qubit entangled states of polarized photons, giving experimental evidence that the considered states contain true multipartite entanglement. [3,4] as it gives a simple sufficient and necessary condition for entanglement. Yet, the situation is much more complicated for higher dimensional and multipartite systems, where simple necessary and sufficient conditions are not known [5].In the analysis of multipartite systems, it is important to distinguish between genuine multipartite entanglement and biseparable (triseparable, etc.) entanglement. Genuine multipartite entangled pure states cannot be created without participation of all parties. Conversely, for pure biseparable states of n parties a group of m < n parties can be found which are entangled among each other, but not with any member of the other group of n − m parties [6]. Distinction and detection of genuine multipartite entanglement poses an important challenge in quantum information science. Bell inequalities are not suited to this aim in general. Multiseparable and biseparable states violate known Bell inequalities less than npartite Greenberger-Horne-Zeilinger (GHZ) states. However, for n > 3 there exist even pure n-partite entangled states with a lower violation than biseparable states [7]. Only recently, significant progress in classifying multipartite entanglement has been achieved using entanglement witnesses [4,8]. These observables can always be used to detect various forms of multipartite entanglement, when some a priori knowledge about the states under investigation is provided [9]; they are in this sense more powerful than Bell inequalities.A witness of genuine n-partite entanglement is an observable which has a positive expectation value on states with n − 1 partite entanglement and a negative expectation value on some n-partite entangled states. The latter states and their entanglement, respectively, are said to be detected by W. Witnesses provide sufficient criteria for entanglement and for distinguishing the various classes of genuine multipartite entangled states.The goal of this Letter is twofold. First, we introduce a general scheme for the construction of multipartite witness operators and their decomposition into locally measurable observables. In this way, we demonstrate how witness operators can be implemented experimentally in a straightforward way by using local projective measurements, even for multipartite systems [10]. Then, we apply this scheme to certain states and perform the experimental detection of their multipartite entanglement, which could not be revealed by known Bell inequalities. In particular, we use this method for the characterization of the three-qubit W state [11], and the four-qubit state |Ψ (4) [12]. A wit...
Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.
We report on the experimental implementation of a Bennett-Brassard 1984 (BB84) protocol type quantum key distribution over a 144 km free-space link using weak coherent laser pulses. Optimization of the link transmission was achieved with bidirectional active telescope tracking, and the security was ensured by employing decoy-state analysis. This enabled us to distribute a secure key at a rate of 12.8 bit/s at an attenuation of about 35 dB. Utilizing a simple transmitter setup and an optical ground station capable of tracking a spacecraft in low earth orbit, this outdoor experiment demonstrates the feasibility of global key distribution via satellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.