We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 Mb and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than 1/3 of Daphnia’s genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The co-expansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes – including many additional loci within sequenced regions that are otherwise devoid of annotations – are the most responsive genes to ecological challenges.
Although plastic debris is constantly accumulating in aquatic environments, the impact on aquatic ecosystems is not yet fully understood. A first important step to assess the consequences of plastic debris in aquatic ecosystems is the establishment of a reliable, verified, and standardized method to quantify the amount of plastic particles in the environment. We improved the density separation approach by the construction of the so called Munich Plastic Sediment Separator (MPSS). It enables a reliable separation of different ecologically relevant size classes of plastic particles from sediment samples. A ZnCl 2 -solution (1.6-1.7 kg/L) as separation fluid allows for an extraction of plastic particles ranging from large fragments to small microplastic particles (S-MPP, <1 mm). Subsequent identification and quantification of the particles with spatial resolution down to 1 µm can be performed using Raman microspectroscopy. Our study is the first providing validated recovery rates of 100% for large microplastic particles (L-MPP, 1-5 mm) and 95.5% for S-MPP. The recovery rate for S-MPP, using the MPSS, was significantly higher than the value obtained by application of classical density separation setup (39.8%). Moreover, our recovery rates were significantly higher than those based on froth flotation (55.0% for L-MPP) commonly used in recycling industries. Hence, our improved method can be used for a reliable and time-efficient separation, identification and quantification of plastic fragments down to S-MPP. This will help foster studies quantifying the increasing contamination of aquatic environments with microplastic particles, which is a crucial prerequisite for future risk assessment and management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.