Whereas drugs are intended to be selective, at least some bind to several physiologic targets, explaining both side effects and efficacy. As many drug-target combinations exist, it would be useful to explore possible interactions computationally. Here, we compared 3,665 FDA-approved and investigational drugs against hundreds of targets, defining each target by its ligands. Chemical similarities between drugs and ligand sets predicted thousands of unanticipated associations. Thirty were tested experimentally, including the antagonism of the β1 receptor by the transporter inhibitor Prozac, the inhibition of the 5-HT transporter by the ion channel drug Vadilex, and antagonism of the histamine H4 receptor by the enzyme inhibitor Rescriptor. Overall, 23 new drug-target associations were confirmed, five of which were potent (< 100 nM). The physiological relevance of one such, the drug DMT on serotonergic receptors, was confirmed in a knock-out mouse. The chemical similarity approach is systematic and comprehensive, and may suggest side-effects and new indications for many drugs.
Neuroactive small molecules are indispensable tools for treating mental illnesses and dissecting nervous system function. However, it has been difficult to discover novel neuroactive drugs. Here, we describe a high—throughput (HT) behavior—based approach to neuroactive small molecule discovery in the zebrafish. We use automated screening assays to evaluate thousands of chemical compounds and find that diverse classes of neuroactive molecules cause distinct patterns of behavior. These `behavioral barcodes' can be used to rapidly identify novel psychotropic chemicals and to predict their molecular targets. For example, we identify novel acetylcholinesterase and monoamine oxidase inhibitors using phenotypic comparisons and computational techniques. By combining HT screening technologies with behavioral phenotyping in vivo, behavior—based chemical screens may accelerate the pace of neuroactive drug discovery and provide small—molecule tools for understanding vertebrate behavior.
In continuation of our studies to evaluate the ability of various conformer generators to produce bioactive conformations, we present the extension of our work on the analysis of Catalyst's conformational subsampling algorithm in a comparative evaluation with OpenEye's currently updated tool Omega 2.0. Our study is based on an enhanced test set of 778 drug molecules and pharmacologically relevant compounds extracted from the Protein Data Bank (PDB). We elaborated protocols for two common conformer generation use cases and applied them to both programs: (i) high-throughput settings for processing large databases and (ii) high-quality settings for binding site exploration or lead structure refinement. While Catalyst is faster in the first case, Omega 2.0 better reproduces the bound ligand conformations from the PDB in less time for the latter case.
Over 90% of the market withdrawals were caused by drug toxicity. Hepatotoxicity and cardiovascular toxicity proved to be the major causes for two out of three market withdrawals in the respective time period. In clinical phases I-III 43% of drug development project terminations were due to insufficient efficacy of the investigated compound. The second important issue, which caused one third of the projects to be closed, was toxicity. ADME parameters and economic and other reasons played a minor role. The results of our study indicate that compared with previous studies on this subject, no major improvements have been achieved in the last decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.