This study is concerned with the film cooling effectiveness of the flow issuing from the gap between the NGV and the transition duct on the NGV endwall, i.e. the purge slot. Different slot widths, positions and injection angles were examined in order to represent changes due to thermal expansion as well as design modifications. Apart from these geometric variations, different blowing ratios (BR) and density ratios (DR) were realized to investigate the effects of the interaction between secondary flow and film cooling effectiveness. The experimental tests were performed in a linear scale-1 cascade equipped with four highly loaded turbine vanes at the Institute of Fluid Mechanics and Fluid Machinery of the University of Kaiserslautern. The mainstream flow parameters were, with a Reynolds number of 300,000 and a Mach number (outlet) of 0.6, set to meet real engine conditions. By using various flow conditioners, periodic flow was obtained in the region of interest (ROI). The adiabatic film cooling effectiveness was determined by using the Pressure Sensitive Paint (PSP) technique. In this context, nitrogen and carbon dioxide were used as tracer gases realizing two different density ratios DR = 1.0 and 1.6. The investigation was conducted for a broad range of blowing ratios with 0.25 ≤ BR ≤ 1.50. In combination with 10 geometry variations and the aforementioned blowing and density ratio variations 100 single operating points were investigated. For a better understanding of the coolant distribution, the secondary flows on the endwall were visualized by oil dye. The measurement results will be discussed based on the areal distribution of film cooling effectiveness, its lateral spanwise as well as its area average. The results will provide a better insight into various parametric effects of gap variations on turbine vane endwall film cooling performance — notably under realistic engine conditions.
Numerical and experimental investigations through different spans of the rotor are a common approach in turbo machinery design. As the aerodynamic quality of rotor blades is crucial for turbo machinery’s efficiency, mass-averaged loss coefficients ζ and turning angles Δβ are of particular interest. Using the example of commonly used NACA-65 profiles, a comparison between the results obtained by those methods should investigate whether Computational Fluid Dynamics (CFD) applying the Transition SST turbulence model delivers sufficiently accurate results regarding both 2D and 3D modeling approaches. The comparison is supplemented by the singularity method based on the potential theory as well as historical data provided by NACA. While CFD produced a noticeable offset for some angle configurations, the 2D results of Δβ were in good agreement for singularity method, historical data and experimental investigations on the center line of the cascade supporting the validity of the measurement. Although significant deviations were also found for ζ, it can be stated that CFD reproduced the qualitative course sufficiently for both variables considered. A similar picture emerges from the 3D comparison: Despite noticeable deviations in quantitative terms, a good correspondence was found for both variables regarding local and mass-averaged values.
This comparative study is concerned with the advances in nozzle guide vane (NGV) design developments and their influence on endwall film cooling performance by injecting coolant through the purge slot. This experimental study compares the film cooling effectiveness and the aerodynamic effects for different purge slot configurations on both a flat and an axisymmetrically contoured endwall of a NGV. While the flat endwall cascade was equipped with cylindrical vanes, the contoured endwall cascade consisted of modern NGVs which represent state-of-the-art high-pressure turbine design standards. Geometric variations, e.g. the slot width and injection angle, as well as different blowing ratios were realized. The mainstream flow parameters were set to meet real engine conditions with regard to Reynolds and Mach numbers. Pressure Sensitive Paint was used to determine the adiabatic film cooling effectiveness. Five-hole probe measurements were performed to measure the flow field in the vane wake region. For a more profound insight into the origin of the secondary flows, oil dye visualizations were carried out. The results show that the advances in NGV design have a significantly positive influence on the distribution of the coolant. This has to be attributed to lesser disturbance of the coolant propagation by secondary flow for the optimized NGV design, since the design features are intended to suppress the formation of secondary flow. It is therefore advisable to take these effects into account when designing the film cooling system of a modern high-pressure turbine.
This comparative study is concerned with the advances in nozzle guide vane (NGV) design developments and their influence on the film cooling performance by injecting coolant through the purge slot. An experimental study compares the film cooling effectiveness as well as the aerodynamic effects for different purge slot configurations on both a flat and an axisymmetrically contoured endwall of a NGV. While the flat endwall cascade was equipped with four cylindrical vanes, the contoured endwall cascade consisted of four modern NGVs which represent state-of-the-art high-pressure turbine design standards. Geometric variations, e.g. the purge slot width and injection angle, as well as different blowing ratios (BR) at an engine-like density ratio (DR = 1.6) were realized to investigate the real-life effect of thermal expansion, design modifications and the interaction between secondary flow and coolant. The mainstream flow parameters were set to meet real engine conditions with regard to Reynolds and Mach numbers. The Pressure Sensitive Paint (PSP) technique was used to determine the adiabatic film cooling effectiveness. Five-hole probe measurements (DR = 1.0) were performed to measure the flow field with its characteristic vortex structures as well as the loss distribution in the vane wake region. For a more profound insight into the origin and development of the secondary flows, oil dye visualizations were carried out on both endwalls. The measurement results will be discussed based on a side-by-side comparison of the distribution of film cooling effectiveness on the endwall, its area-averaged values as well as the two-dimensional distribution of total pressure losses and the secondary flow field. The results of this study show that the advances in NGV design development have had a significantly positive influence on the distribution of the coolant. This has to be attributed to lesser disturbance of the coolant propagation by secondary flow for the optimized NGV design, since the design features are intended to suppress the formation of secondary flow. In contrast to the results of the cylindrical profile, sufficient cooling can be already provided with a perpendicular injection in the case of the modern NGV. It is therefore advisable to take these effects into account when designing the film cooling system of a modern high-pressure turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.