Developing Arabidopsis (Arabidopsis thaliana) seeds and embryos represent a complex set of cell layers and tissues that mediate the transport and partitioning of carbohydrates, amino acids, hormones, and signaling molecules from the terminal end of the funicular phloem to and between these seed tissues and eventually to the growing embryo. This article provides a detailed analysis of the symplastic domains and the cell-to-cell connectivity from the end of the funiculus to the embryo, and within the embryo during its maturation. The cell-to-cell movement of the green fluorescent protein or of mobile and nonmobile green fluorescent protein fusions was monitored in seeds and embryos of plants expressing the corresponding cDNAs under the control of various promoters (SUC2, SUC3, TT12, and GL2) shown to be active in defined seed or embryo cell layers (SUC3, TT12, and GL2) or only outside the developing Arabidopsis seed (AtSUC2). Cell-to-cell movement was also analyzed with the low-molecular-weight fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonate. The analyses presented identify a phloem-unloading domain at the end of the funicular phloem, characterize the entire outer integument as a symplastic extension of the phloem, and describe the inner integument and the globular stage embryo plus the suspensor as symplastic domains. The results also show that, at the time of hypophysis specification, the symplastic connectivity between suspensor and embryo is reduced or interrupted and that the embryo develops from a single symplast (globular and heart stage) to a mature embryo with new symplastic domains.
SummaryTransgenic Arabidopsis plants were constructed to express a range of GFP-fusion proteins (36-67 kDa) under the companion cell (CC)-specific AtSUC2 promoter. These plants were used to monitor the trafficking of these GFP-fusion proteins from the CCs into the sieve elements (SEs) and their subsequent translocation within and out of the phloem. The results revealed a large size exclusion limit (SEL) (>67 kDa) for the plasmodesmata connecting SEs and CCs in the loading phloem. Membrane-anchored GFP-fusions and a GFP variant targeted to the endoplasmic reticulum (ER) remained inside the CCs and were used as 'zero trafficking' controls. In contrast, free GFP and all soluble GFP-fusions, moved from the CCs into the SEs and were subsequently translocated through the phloem. Phloem unloading and post-phloem transport of these mobile GFP-fusions were studied in root tips, where post-phloem transport occurred only for the free form of GFP. All of the other soluble GFP-fusion variants were unloaded and restricted to a narrow zone of cells immediately adjacent to the mature protophloem. It appears that this domain of cells, which has a peripheral SEL of about 27-36 kDa, allows protein exchange between protophloem SEs and surrounding cells, but restricts general access of large proteins into the root tip. The presented data provide additional information on phloem development in Arabidopsis in relation to the formation of symplasmic domains.
The Arabidopsis AtSUC3 gene encodes a sucrose (Suc) transporter that differs in size and intron number from all other Arabidopsis Suc transport proteins. Each plant species analyzed so far possesses one transporter of this special type, and several functions have been discussed for these proteins, including the catalysis of transmembrane Suc transport, and also Suc sensing and regulation of other Suc transporters. Here, we show that the AtSUC3 protein is localized in the sieve elements of the Arabidopsis phloem and is not colocalized with the companion cell-specific AtSUC2 phloem loader. Even stronger AtSUC3 expression is observed in numerous sink cells and tissues, such as guard cells, trichomes, germinating pollen, root tips, the developing seed coat, or stipules. Moreover, AtSUC3 expression is strongly induced upon wounding of Arabidopsis tissue. The physiological role of AtSUC3 in these different cells and tissues is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.