A comprehensive assessment of pesticides in surface waters is challenging due to the large number of potential contaminants. Most scientific studies and routine monitoring programs include only 15-40 pesticides, which leads to error-prone interpretations. In the present study, an extensive analytical screening was carried out using liquid chromatography-high-resolution mass spectrometry, covering 86% of all polar organic pesticides sold in Switzerland and applied to agricultural or urban land (in total 249 compounds), plus 134 transformation products; each of which could be quantified in the low ng/L range. Five medium-sized rivers, containing large areas of diverse crops and urban settlements within the respective catchments, were sampled between March and July 2012. More than 100 parent compounds and 40 transformation products were detected in total, between 30 and 50 parent compounds in each two-week composite sample in concentrations up to 1500 ng/L. The sum of pesticide concentrations was above 1000 ng/L in 78% of samples. The chronic environmental quality standard was exceeded for 19 single substances; using a mixture toxicity approach, exceedances occurred over the whole measurement period in all rivers. With scenario calculations including only 30-40 frequently measured pesticides, the number of detected substances and the mixture toxicity would be underestimated on average by a factor of 2. Thus, selecting a subset of substances to assess the surface water quality may be sufficient, but a comprehensive screening yields substantially more confidence.
To take appropriate measures to minimize agricultural herbicide inputs into surface waters, detailed knowledge is required about all the factors that control the losses of a given compound from point sources (i.e., farmyards) as well as from the diffuse sources (i.e., the fields) within a given catchment. In this and in a companion paper, we present the results of a comprehensive field study, in which the temporal and spatial variability of the losses of three herbicides (atrazine, dimethenamid, and metolachlor) into the surface waters within a small catchment (2.1 km2) were investigated on different scales (i.e., field scale to whole catchment) after a controlled application of the compounds. In this paper, we discuss the loss dynamics of the three herbicides (and some of their metabolites) from the whole catchment over a period of 67 d after application. An identical mixture of the three herbicides was applied on 13 cornfields within 12 h, allowing for a comparison of their losses under identical meteorological conditions. Thanks to a high temporal sampling resolution, it was possible to distinguish between losses from a farmyard and losses from the fields. Farmyard losses contributed less than 20% to the total loads but caused the highest concentrations. The major herbicide losses from the agricultural fields occurred during the first two rain events after application that led to significant surface runoff and preferential flow into tile drains. In the soils of all fields, dimethenamid declined somewhat faster than atrazine and metolachlor, whereas atrazine was mobilized most effectively to runoff water. Relative losses of the three compounds did not vary by more than a factor of 3 (0.82, 0.27, and 0.41% of the mass applied for atrazine, dimethenamid, and metolachlor, respectively). Highest peak concentrations at the outlet of the catchment were found for atrazine (i.e., approximately 8 microg L(-1) for a short period (<2 h) due to point source losses and between 1 and 3.5 microg L(-1) during more than 24 h due to diffuse losses).
Diffuse losses from agricultural fields are a major input source for herbicides in surface waters. In this and in a companion paper, we present the results of a comprehensive field study aimed at assessing the overall loss dynamics of three model herbicides (i.e., atrazine, dimethenamid, and metolachlor) from a small agricultural catchment (2.1 km2) and evaluating the relative contributions of various fields having different soil and topographical characteristics. An identical mixture of the three model herbicides as well as an additional pesticide for identification of a given field were applied within 12 h on 13 cornfields (total area approximately 12 ha), thus ensuring that the herbicides were exposed to identical meteorological conditions. After the simultaneous application, the concentrations of the compounds were monitored in the soils and at the outlets of three subcatchments containing between 4 and 5 cornfields each. Particular emphasis was placed on the two rain events that led to the major losses of the herbicides. The rank orders of herbicide dissipation in the soils and of the compound-specific mobilization into runoff were the same in all three subcatchments and were independent of the field characteristics. In contrast, the field properties caused the relative losses from two subcatchments to differ by up to a factor of 56 during the most important event, whereas compound-specific differences of the three neutral herbicides caused the losses to vary only by a factor of 2 during the same event. The enormous spatial variability was mainly caused by factors influencing the fraction of rain that was lost to surface water by fast transport mechanisms. Thus, the key factors determining the spatially variable herbicide losses were the permeability of the soils, the topography, and the location of subsurface drainage systems. These results illustrate the large potential to reduce herbicide losses by avoiding application on risk areas.
Understanding the processes causing herbicide transport to surface waters is crucial to determine mitigation options to reduce these losses. To this end, we investigated the atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) transport in three agricultural catchments (1.1-2.1 km2) in the watershed of Lake "Greifensee" (Switzerland). In 1999, atrazine application data were recorded for all three catchments. Time proportional samples were taken at a high temporal resolution at the catchment outlets. Extremely wet conditions caused large relative losses from the catchments, ranging between 0.6 and 3.5% of the amount applied. Most of the atrazine load was due to event-driven diffuse losses from the fields. Farmyard runoff contributed less but caused the highest concentrations (up to 31 microg L(-1)) in the brooks. The maximum concentrations due to diffuse losses varied between 1.2 and 8.2 microg L(-1) among the catchments. Despite different absolute concentration levels, the concentration time-series were very similar. It seems that the travel-times within the catchments were mainly controlled by the rainfall pattern with little influence of the catchment properties. These properties, however, caused the relative losses to vary by a factor of 6 between the catchments. This variability could be partly explained by differences in the connectivity of the fields to the brooks and by their hydrological soil properties. A comparison of the losses from the three catchments with those from the entire watershed of Lake Greifensee demonstrated that they were representative for the larger area. Hence, the study results provide a good data set to evaluate distributed models predicting herbicide losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.