Abstract. Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can modify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes controlling organic matter cycling in the coastal Peruvian upwelling system. Eight mesocosms, each with a volume of ∼55 m3, were deployed for 50 d ∼6 km off Callao (12∘ S) during austral summer 2017, coinciding with a coastal El Niño phase. After mesocosm deployment, we collected subsurface waters at two different locations in the regional oxygen minimum zone (OMZ) and injected these into four mesocosms (mixing ratio ≈1.5 : 1 mesocosm: OMZ water). The focus of this paper is on temporal developments of organic matter production, export, and stoichiometry in the individual mesocosms. The mesocosm phytoplankton communities were initially dominated by diatoms but shifted towards a pronounced dominance of the mixotrophic dinoflagellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift coincided with a short-term increase in production during the A. sanguinea bloom, which left a pronounced imprint on organic matter C : N : P stoichiometry. However, C, N, and P export fluxes did not increase because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, export fluxes during the study were decoupled from surface production and sustained by the remaining plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant for most of the experiment. We explain this constancy by light limitation through self-shading by phytoplankton and by inorganic nitrogen limitation which constrained phytoplankton growth. Thus, gain and loss processes remained balanced and there were few opportunities for blooms, which represents an event where the system becomes unbalanced. Overall, our mesocosm study revealed some key links between ecological and biogeochemical processes for one of the most economically important regions in the oceans.
Abstract. The coastal waters of the Baltic Sea are subject to high variations in environmental conditions, triggered by natural and anthropogenic causes. Thus, in situ measurements of water parameters can be strategic for our understanding of the dynamics in shallow water habitats. In this study we present the results of a monitoring program at low water depths (1–2.5 m), covering 13 stations along the Baltic coast of Schleswig-Holstein, Germany. The provided dataset consists of records for dissolved inorganic nutrient concentrations taken twice a month and continuous readings at 10 min intervals for temperature, salinity and oxygen content. Data underwent quality control procedures and were flagged. On average, a data availability of >90 % was reached for the monitoring period within 2016–2018. The obtained monitoring data reveal great temporal and spatial variabilities of key environmental factors for shallow water habitats in the southwestern Baltic Sea. Therefore the presented information could serve as realistic key data for experimental manipulations of environmental parameters as well as for the development of oceanographic, biogeochemical or ecological models. The data associated with this article can be found at https://doi.org/10.1594/PANGAEA.895257 (Franz et al., 2018).
Abstract. The coastal waters of the Baltic Sea are subject to high variations in environmental conditions, triggered by natural and anthropogenic causes. Thus, in situ measurements of water parameters can be strategic for our understanding of the dynamics in shallow water habitats. However, research vessels have very limited access to these areas, resulting in scarce availability of physical and chemical information. In this study we present the results of a monitoring program at low water depths (1–2.5 m), covering 13 stations along the southwestern Baltic coast. The provided dataset consists of biweekly records for dissolved inorganic nutrient concentrations and continuous readings at 10 min interval for temperature, salinity and oxygen content. Data underwent quality control procedures and were flagged respectively. On average, a data availability of > 90 % was reached for the monitoring period within 2016–2018. The obtained monitoring data reveal great temporal and spatial variabilities of key environmental factors for shallow water habitats in the southwestern Baltic Sea. Therefore the presented information could serve as realistic key data for experimental manipulations of environmental parameters as well as for the development of oceanographic, biogeochemical or ecological models. The data associated with this article can be found at https://doi.org/10.1594/PANGAEA.895257 (Franz et al., 2018).
Abstract. Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The high productivity in surface waters is facilitated by upwelling of nutrient-rich deep waters, with high light availability enabling fast phytoplankton growth and nutrient utilization. However, there are numerous biotic and abiotic factors modifying productivity and biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions on their future functioning requires understanding of the mechanisms driving biogeochemical cycles therein. In this study, we used in situ mesocosms to obtain mechanistic understanding of processes controlling productivity, organic matter export, and particulate matter stoichiometry in the coastal Peruvian upwelling system. Therefore, eight mesocosm units with a volume of ~50 m3 were deployed for 50 days ~6 km off Callao during austral summer 2017, coinciding with a coastal El Niño event. To compare how upwelling of different water bodies influences plankton succession patterns, we collected two subsurface waters at different locations in the regional oxygen minimum zone (OMZ) and injected these into four replicate mesocosms, respectively (mixing ratio ≈ 1.5:1 mesocosm: OMZ water). The differences in nutrient concentrations between the collected water bodies were relatively small, and therefore we do not consider treatment differences in the present paper. The phytoplankton communities were initially dominated by diatoms but shifted towards a pronounced dominance of the mixotrophic harmful dinoflagellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift resulted in a major short-term increase in productivity during A. sanguinea growth which left a pronounced imprint on organic matter C:N:P stoichiometry. However, C, N, and P export fluxes were not affected by this ecological regime shift because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, ongoing export fluxes during the study were maintained mainly by a remaining “background” plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant in between the ecological regime shifts. We explain this constancy by light limitation through self-shading by phytoplankton and inorganic nitrogen limitation which constrained phytoplankton growth. Thus, gain and loss processes seemed to be relatively well balanced and there was little opportunity for blooms, which represents an event where the system becomes unbalanced. The mesocosm study revealed key links between ecological and biogeochemical processes for one of the economically most important regions in the oceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.