The production rates of carbon fiber reinforced plastic (CFRP) parts are rising constantly which in turn drives research to bring a higher level of automation to the manufacturing processes of CFRP. Resin transfer molding (RTM), which is seen as a production method for high volumes, has been accelerated to a high degree. However, complex net-shape preforms are necessary for this process, which are widely manually manufactured. To face these challenges a new concept for the manufacturing of carbon fiber preforms with a form-flexible gripping, draping and joining end-effector is presented and discussed. Furthermore, this paper investigates the application of this concept, describes the initial build-up of a demonstrator, focusing on material selection and heating technology, and discusses test results with the prototype. This prototype already validates the feasibility of the proposed concept on the basis of a generic preform geometry. After a summary, this paper discusses future in-depth research concerning the concept and its application in more complex geometries.
Abstract. Customers demands for highest product quality and lowest product costs and the use of rapidly changing technologies are the challenges for industrial companies. To cope with these challenges production processes need to be more effective. This also applies to the production of innovative micro products. However, the micro production has so far not adopted the advantages of established organization and quality strategies in production systems. Therefore, this article proposes three compensations methods which integrate quality strategies into a micro production system (MPS) with respect to the special needs of producing micro products. The aim is to balance quality errors against each other throughout the production process. This is illustrated by the example of micro assembly. This example uses a simulation approach to show the integration of the afore mentioned compensation methods in combination with a quality strategy. It allows a dynamic view of the effect of balancing errors during the whole production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.