In many bacterial pathogens, the second messenger c-di-GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c-di-GMP induces EPS biogenesis is largely unknown. Here, we show that c-di-GMP allosterically activates the synthesis of poly-b-1,6-N-acetylglucosamine (poly-GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C-di-GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly-GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c-di-GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c-di-GMP-mediated process that relies on protein-protein interaction. At low c-di-GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c-di-GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c-di-GMP signalling. These data uncover a mechanism of c-di-GMP-mediated EPS control and provide a frame for c-di-GMP signalling specificity in pathogenic bacteria.
The alphaproteobacterial general stress response is governed by a conserved partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. In the model organism Caulobacter crescentus, PhyR was proposed to be phosphorylated by the histidine kinase PhyK, but biochemical evidence in support of such a role of PhyK is missing. Here, we identify a single-domain response regulator, MrrA, that is essential for general stress response activation in C. crescentus. We demonstrate that PhyK does not function as a kinase but accepts phosphoryl groups from MrrA and passes them on to PhyR, adopting the role of a histidine phosphotransferase. MrrA is phosphorylated by at least six histidine kinases that likely serve as stress sensors. MrrA also transfers phosphate to LovK, a histidine kinase involved in C. crescentus holdfast production and attachment, which also negatively regulates the general stress response. We show that LovK together with the response regulator LovR acts as a phosphate sink to redirect phosphate flux away from the PhyKR branch. In agreement with the biochemical data, an mrrA mutant is unable to activate the general stress response and shows a hyperattachment phenotype, which is linked to decreased expression of the major holdfast inhibitory protein HfiA. We propose that MrrA serves as a central phosphorylation hub that coordinates the general stress response with C. crescentus development and other adaptive behaviors. The characteristic bow-tie architecture of this phosphorylation network with MrrA as the central knot may expedite the evolvability and species-specific niche adaptation of this group of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.