This paper comprehensively reviews the emerging topic of optoacoustic imaging from the image reconstruction and quantification perspective. Optoacoustic imaging combines highly attractive features, including rich contrast and high versatility in sensing diverse biological targets, excellent spatial resolution not compromised by light scattering, and relatively low cost of implementation. Yet, living objects present a complex target for optoacoustic imaging due to the presence of a highly heterogeneous tissue background in the form of strong spatial variations of scattering and absorption. Extracting quantified information on the actual distribution of tissue chromophores and other biomarkers constitutes therefore a challenging problem. Image quantification is further compromised by some frequently-used approximated inversion formulae. In this review, the currently available optoacoustic image reconstruction and quantification approaches are assessed, including back-projection and model-based inversion algorithms, sparse signal representation, wavelet-based approaches, methods for reduction of acoustic artifacts as well as multi-spectral methods for visualization of tissue bio-markers. Applicability of the different methodologies is further analyzed in the context of real-life performance in small animal and clinical in-vivo imaging scenarios.
The inversion accuracy in optoacoustic tomography depends on a number of parameters, including the number of detectors employed, discrete sampling issues or imperfectness of the forward model. These parameters result in ambiguities on the reconstructed image. A common ambiguity is the appearance of negative values, which have no physical meaning since optical absorption can only be higher or equal than zero. We investigate herein algorithms that impose non-negative constraints in model-based optoacoustic inversion. Several state-of-the-art non-negative constrained algorithms are analyzed. Furthermore, an algorithm based on the conjugate gradient method is introduced in this work. We are particularly interested in investigating whether positive restrictions lead to accurate solutions or drive the appearance of errors and artifacts. It is shown that the computational performance of non-negative constrained inversion is higher for the introduced algorithm than for the other algorithms, while yielding equivalent results. The experimental performance of this inversion procedure is then tested in phantoms and small animals, showing an improvement in image quality and quantitativeness with respect to the unconstrained approach. The study performed validates the use of non-negative constraints for improving image accuracy compared to unconstrained methods, while maintaining computational efficiency.
We interrogated whether optoacoustic tomography could be employed to study blood functional parameters and biodistribution of injected fluorescent agents in humans. Using a multichannel scanner at a frame rate of 10 images per second, we obtained cross-sectional images of the human finger in real time, before and after the administration of indocyanine green. We demonstrated that multispectral optoacoustic tomography can sense fast flow kinetics and resolve spatiotemporal characteristics of a common fluorochrome in human vasculature at clinically relevant concentrations. We further register ICG images with oxygen saturation maps and anatomical views of the proximal interphalangeal joint of a healthy volunteer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.