The N-donor complexing ligand 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) was synthesized and screened as an extracting agent selective for trivalent actinide cations over lanthanides. C5-BPP extracts Am(III) from up to 1 mol/L HNO(3) with a separation factor over Eu(III) of approximately 100. Due to its good performance as an extracting agent, the complexation of trivalent actinides and lanthanides with C5-BPP was studied. The solid-state compounds [Ln(C5-BPP)(NO(3))(3)(DMF)] (Ln = Sm(III), Eu(III)) were synthesized, fully characterized, and compared to the solution structure of the Am(III) 1:1 complex [Am(C5-BPP)(NO(3))(3)]. The high stability constant of log β(3) = 14.8 ± 0.4 determined for the Cm(III) 1:3 complex is in line with C5-BPP's high distribution ratios for Am(III) observed in extraction experiments.
With the aim of better understanding the selectivity of the established system 2,6-ditriazinylpyridine (BTP) for actinide(III)/lanthanide(III) separations, a related model system was synthesized and studied. The N donor complexing ligand 6-(3,5-dimethyl-1H-pyrazol-1-yl)-2,2'-bipyridine (dmpbipy) was synthesized having a fused N heterocycle ring structure modified from the BTP partitioning ligand, and its extraction performance and selectivity for trivalent actinide cations over lanthanides was evaluated. X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and time-resolved laser fluorescence spectroscopy (TRLFS) results show that 1:1 complexes are formed, unlike the 1:3 complex for BTP systems. The equilibrium constant for curium complex formation with dmpbipy was determined to be log K = 2.80, similar to that for nitrate. The Gibbs free energy, ΔG(20 °C), of 1:1 Cm-dmpbipy formation in n-octan-1-ol was measured to be -15.5 kJ/mol. The dmpbipy ligand in 1-octanol does not extract Am(III) Eu(III) from HNO(3) but was found to extract Am(III) with limited selectivity over Eu(III) (SF(Am(III)/Eu(III)) ≈ 8) dissolved in 2-bromohexanoic acid and kerosene at pH > 2.4.
The complexation of Cm(III) and Eu(III) with 2,6-bis(5,6-di(sulfophenyl)-1,2,4-triazin-3-yl)pyridine (aq-BTP) is studied in water at pH 3.0 applying time-resolved laser fluorescence spectroscopy. With increasing ligand concentration [M(H(2)O)(9-3n)(aq-BTP)(n)] (M = Cm(III)/Eu(III), n = 1, 2, 3) complex species are spectroscopically identified. The conditional stability constants of the M(III) 1 : 3 complex species with aq-BTP are log β(03) = 12.2 for Cm(III) and log β(03) = 10.2 for Eu(III). The complexation reaction is enthalpy- and entropy-driven for both metal ions, while the enthalpy change ΔH(03) is 9.7 kJ mol(-1) more negative for Cm(III); changes in ΔS(03) are marginal. The difference in ΔG(03) of -12.7 kJ mol(-1) between the formation of the [M(aq-BTP)(3)] complexes agrees with aq-BTP's selectivity in liquid-liquid extraction studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.