Metal(H2O2) complexes have been implicated in kinetic and computational studies but have never been observed. Accordingly, H2O2 has been described as a very weak ligand. We report the first metal(H2O2) adduct, which is made possible by incorporating intramolecular hydrogen-bonding interactions with bound H2O2. This Zn(II)(H2O2) complex decays in solution by a second-order process that is slow enough to enable characterization of this species by X-ray crystallography. This report speaks to the intermediacy of metal(H2O2) adducts in chemistry and biology and opens the door to exploration of these species in oxidation catalysis.
CoII complexes bearing sulfonamido ligands derived from tris(2-aminoethyl)amine (H6tren) assemble into complex architectures in the presence of Group II ions through interactions between the Group II ion and the sulfonyl oxygens.
M(H2 O2 ) adducts have been postulated as intermediates in biological and industrial processes; however, only one observable M(H2 O2 ) adduct has been reported, where M is redox-inactive zinc. Herein, direct solution-phase detection of an M(H2 O2 ) adduct with a redox-active metal, cobalt(II), is described. This Co(II) (H2 O2 ) compound is made observable by incorporating second-sphere hydrogen-bonding interactions between bound H2 O2 and the supporting ligand, a trianionic trisulfonamido ligand. Thermodynamics of H2 O2 binding and decay kinetics of the Co(II) (H2 O2 ) species are described, as well as the reaction of this Co(II) (H2 O2 ) species with Group 2 cations.
IgG antibody-transporter conjugates enable intracellular uptake of biologically active IgG antibodies that inhibit viral mediated syncytia formation in respiratory syncytial virus green fluorescent protein (RSV-GFP) infected human epithelial cells (HEp-2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.