Spinal cord injury commonly leads to permanent motor and sensory deficits due to the limited regenerative capacity of the adult central nervous system (CNS). Nucleic acid-based therapy is a promising strategy to deliver bioactive molecules capable of promoting axonal regeneration. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to its cytotoxicity and low transfection efficiency in the presence of serum proteins. In this study, we synthesized cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), by grafting low molecular weight PLGA (4kDa) to bPEI (25kDa) at approximately a 3:1 ratio as an efficient nonviral vector. We show that PgP micelle is capable of efficiently transfecting plasmid DNA (pDNA) and siRNA in the presence of 10% serum in neuroglioma (C6) cells, neuroblastoma (B35) cells, and primary E8 chick forebrain neurons (CFN) with pDNA transfection efficiencies of 58.8%, 75.1 %, and 8.1 %, respectively. We also show that PgP provides high-level transgene expression in the rat spinal cord in vivo that is substantially greater than that attained with bPEI. The combination of improved transfection and reduced cytotoxicity in vitro in the presence of serum and in vivo transfection of neural cells relative to conventional bPEI suggests that PgP may be a promising nonviral vector for therapeutic nucleic acid delivery for neural regeneration.
Spinal cord injury (SCI) results in permanent loss of motor and sensory function due to developmentally-related and injured-induced changes in the extrinsic microenvironment and intrinsic neuronal biochemistry that limit plasticity and axonal regeneration. Our long term goal is to develop cationic, amphiphilic copolymers (poly (lactide-co-glycolide)-g-polyethylenimine, PgP) for combinatorial delivery of therapeutic nucleic acids (TNAs) and drugs targeting these different barriers. In this study, we evaluated the ability of PgP to deliver siRNA targeting RhoA, a critical signaling pathway activated by multiple extracellular inhibitors of axonal regeneration. After generation of rat compression SCI model, PgP/siRhoA polyplexes were locally injected into the lesion site. Relative to untreated injury only, PgP/siRhoA polyplexes significantly reduced RhoA mRNA and protein expression for up to 4 weeks post-injury. Histological analysis at 4 weeks post-injury showed that RhoA knockdown was accompanied by reduced apoptosis, cavity size, and astrogliosis and increased axonal regeneration within the lesion site. These studies demonstrate that PgP is an efficient non-viral delivery carrier for therapeutic siRhoA to the injured spinal cord and may be a promising platform for the development of combinatorial TNA/drug therapy.
Among the complex pathophysiological events following spinal cord injury (SCI), one of the most important molecular level consequences is a dramatic reduction in neuronal cyclic adenosine monophosphate (cAMP) levels. Many studies shown that rolipram (Rm), a phosphodiesterase IV inhibitor, can protect against secondary cell death, reduce inflammatory cytokine levels and immune cell infiltration, and increase white matter sparing and functional improvement. Previously, we developed a polymeric micelle nanoparticle, poly(lactide-co-glycolide)-graft-polyethylenimine (PgP), for combinatorial delivery of therapeutic nucleic acids and drugs for SCI repair. In this study, we evaluated PgP as an Rm delivery carrier for SCI repair. Rolipram's water solubility was increased ∼6.8 times in the presence of PgP, indicating drug solubilization in the micelle hydrophobic core. Using hypoxia as an in vitro SCI model, Rm-loaded PgP (Rm-PgP) restored cAMP levels and increased neuronal cell survival of cerebellar granular neurons. The potential efficacy of Rm-PgP was evaluated in a rat compression SCI model. After intraspinal injection, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine Iodide-loaded PgP micelles were retained at the injection site for up to 5 days. Finally, we show that a single injection of Rm-PgP nanoparticles restored cAMP in the SCI lesion site and reduced apoptosis and the inflammatory response. These results suggest that PgP may offer an efficient and translational approach to delivering Rm as a neuroprotectant following SCI.
Excessive and prolonged neuroinflammation leads to neuronal cell death and limits functional recovery after traumatic brain injury (TBI). Dexamethasone (DX) is a steroidal anti-inflammatory agent that is known to attenuate early expression of pro-inflammatory cytokines associated with activated microglia/macrophages. In this study, we investigated the effect of dexamethasone-conjugated hyaluronic acid (HA-DXM) incorporated in a hydrolytically degradable, photo-cross-linkable poly (ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) hydrogel on the inflammatory response, apoptosis, and functional recovery in a controlled cortical impact (CCI) rat TBI model. In vitro, DX release from PEG-bis-AA/HA-DXM hydrogel was slow in phosphate-buffered saline without enzymes, but significantly increased in the presence of hyauronidase/esterase enzymes. TBI was generated by a CCI device armed with a 3 mm tip (3.5 m s−1, depth: 2 mm) and treated immediately with PEG-bis-AA/HA-DXM hydrogel. PEG-bis-AA/HA hydrogel without DX was used for comparison and untreated TBI group was used as a control. Significant reductions in cavity size, inflammatory response, and apoptosis were observed in animals treated with PEG-bis-AA/HA-DXM compared to those receiving PEG-bis-AA/HA and untreated. Animals receiving the PEG-bis-AA/HA-DXM hydrogel also exhibited higher neuronal cell survival and improved motor functional recovery compared to the other two groups.
Multiple age-related and injury-induced characteristics of the adult central nervous system (CNS) pose barriers to axonal regeneration and functional recovery following injury. In situ gene therapy is a promising approach to address the limited availability of growth-promoting biomolecules at CNS injury sites. The ultimate goal of our work is to develop, a cationic amphiphilic copolymer for simultaneous delivery of drug and therapeutic nucleic acids to promote axonal regeneration and plasticity after spinal cord injury. Previously, we reported the synthesis and characterization of a cationic amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) and its ability to efficiently transfect cells with pDNA in the presence of serum. We also demonstrated the efficacy of PgP as a therapeutic siRhoA carrier in a rat compression spinal cord injury model. In this work, we show that PgP/pDNA polyplexes provide improved stability in the presence of competing polyanions and nuclease protection in serum relative to conventional branched polyethylenimine control. PgP/pDNA polyplexes maintain bioactivity for transfection after lyophilization/reconstitution and during storage at 4 °C for up to 5 months, important features for commercial and clinical application. We also demonstrate that PgP/pDNA polyplexes loaded with a hydrophobic fluorescent dye are retained in local neural tissue for up to 5 days and that PgP can efficiently deliver pβ-Gal in a rat compression SCI model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.