Purpose
To facilitate the transition of MALDI–MS Imaging (MALDI–MSI) from basic science to clinical application, it is necessary to analyze formalin‐fixed paraffin‐embedded (FFPE) tissues. The aim is to improve in situ tryptic digestion for MALDI–MSI of FFPE samples and determine if similar results would be reproducible if obtained from different sites.
Experimental Design
FFPE tissues (mouse intestine, human ovarian teratoma, tissue microarray of tumor entities sampled from three different sites) are prepared for MALDI–MSI. Samples are coated with trypsin using an automated sprayer then incubated using deliquescence to maintain a stable humid environment. After digestion, samples are sprayed with CHCA using the same spraying device and analyzed with a rapifleX MALDI Tissuetyper at 50 µm spatial resolution. Data are analyzed using flexImaging, SCiLS, and R.
Results
Trypsin application and digestion are identified as sources of variation and loss of spatial resolution in the MALDI–MSI of FFPE samples. Using the described workflow, it is possible to discriminate discrete histological features in different tissues and enabled different sites to generate images of similar quality when assessed by spatial segmentation and PCA.
Conclusions and Clinical Relevance
Spatial resolution and site‐to‐site reproducibility can be maintained by adhering to a standardized MALDI–MSI workflow.
Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal β-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by β-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The HexaNeu3 mice were healthy at birth, but died at 1.5 to 4.5months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of HexaNeu3 mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The HexaNeu3 mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the HexaNeu3 mice. Thus, the HexaNeu3 mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.