Traditional ergonomic risk assessment tools such as the Rapid Upper Limb Assessment (RULA) are often not sensitive enough to evaluate well-optimized work routines. An implementation of kinematic data captured by inertial sensors is applied to compare two work routines in dentistry. The surgical dental treatment was performed in two different conditions, which were recorded by means of inertial sensors (Xsens MVN Link). For this purpose, 15 (12 males/3 females) oral and maxillofacial surgeons took part in the study. Data were post processed with costume written MATLAB® routines, including a full implementation of RULA (slightly adjusted to dentistry). For an in-depth comparison, five newly introduced levels of complexity of the RULA analysis were applied, i.e., from lowest complexity to highest: (1) RULA score, (2) relative RULA score distribution, (3) RULA steps score, (4) relative RULA steps score occurrence, and (5) relative angle distribution. With increasing complexity, the number of variables times (the number of resolvable units per variable) increased. In our example, only significant differences between the treatment concepts were observed at levels that are more complex: the relative RULA step score occurrence and the relative angle distribution (level 4 + 5). With the presented approach, an objective and detailed ergonomic analysis is possible. The data-driven approach adds significant additional context to the RULA score evaluation. The presented method captures data, evaluates the full task cycle, and allows different levels of analysis. These points are a clear benefit to a standard, manual assessment of one main body position during a working task.
Background Musculoskeletal disorders (MSD) are common among dental professionals. The most common areas affected are the trunk, neck, shoulders and wrists. Current evidence suggests that the causes of MSD can be found in the physical demands of the profession. Posture and movement during treatment is influenced by the arrangement of the treatment concept (patient chair, equipment and cabinets). It has not been investigated whether the ergonomic risk differs between the treatment concepts. Methods To evaluate the prevalence of MSD in dental professionals, 1000 responses will be collected from a nationwide (Germany) online questionnaire (mod. Nordic Questionnaire and mod. Meyer questionnaire). In order to assess the ergonomic risk of the treatment techniques used in the four treatment concepts, 3D movement analyses are carried out with inertial sensors. For this purpose, 20 teams of dentists and dental assistants from four dental fields of specializations (generalists, orthodontists, endodontists and oral surgeons) and a student control group will be recruited. Each team will execute field specific standardized treatments at a dummy head. Measurements are carried out in each of the four treatment concepts. The data will be analyzed using the Rapid Upper Limb Assessment (RULA) which will be modified for the evaluation of objective data. Conclusions On the basis of these investigations, a substantial gain of knowledge regarding work-related MSD in the field of dentistry and its potential biomechanical causes is possible. For the first time, objective and differentiated comparisons between the four treatment concepts are possible for different fields of dental specialization. Up to now, statically held positions of the trunk and proximal upper extremities, but also the repetitive movements of the hands have been considered a risk for MSD. Since both are included in the RULA, dental activities can be assessed in a detailed but also global manner with regard to ergonomic risks.
Musculoskeletal disorder (MSD) is already prevalent in dental students despite their young age and the short duration of dental practice. The current findings state that the causes of MSD are related to posture during dental work. This study aims to investigate the ergonomic risk of dental students. In order to analyze the ergonomic risk of dental students, 3D motion analyses were performed with inertial sensors during the performance of standardized dental activities. For this purpose, 15 dental students and 15 dental assistant trainees (all right-handed) were measured in a team. Data were analyzed using the Rapid Upper Limb Assessment (RULA), which was modified to evaluate objective data. Ergonomic risk was found for the following body parts in descending order: left wrist, right wrist, neck, trunk, left lower arm, right lower arm, right upper arm, left upper arm. All relevant body parts, taken together, exhibited a posture with the highest RULA score that could be achieved (median Final Overall = 7), with body parts in the very highest RULA score of 7 for almost 80% of the treatment time. Dental students work with poor posture over a long period of time, exposing them to high ergonomic risk. Therefore, it seems necessary that more attention should be paid to theoretical and practical ergonomics in dental school.
In order to classify and analyze the parameters of upper body posture in clinical or physiotherapeutic settings, a baseline in the form of standard values with special regard to age, sex and BMI is required. Thus, subjectively healthy men and women aged 21–60 years were measured in this project. The postural parameters of 800 symptom-free male (n = 397) and female (n = 407) volunteers aged 21–60 years (Ø♀: 39.7 ± 11.6, Ø ♂: 40.7 ± 11.5 y) were studied. The mean height of the men was 1.8 ± 0.07 m, with a mean body weight of 84.8 ± 13.1 kg and an average BMI of 26.0 ± 3.534 kg/m2. In contrast, the mean height of the women was 1.67 ± 0.06 m, with a mean body weight of 66.5 ± 12.7 kg and an average BMI of 23.9 ± 4.6 kg/m2. By means of video rasterstereography, a 3-dimensional scan of the upper back surface was measured when in a habitual standing position. The means or medians, confidence intervals, tolerance ranges, the minimum, 2.5, 25, 50, 75, 97.5 percentiles and the maximum, plus the kurtosis and skewness of the distribution, were calculated for all parameters. Additionally, ANOVA and a factor analyses (sex, BMI, age) were conducted. In both sexes across all age groups, balanced, symmetrical upper body statics were evident. Most strikingly, the females showed greater thoracic kyphosis and lumbar lordosis angles (kyphosis: Ø ♀ 56°, Ø♂ 51°; lordosis: Ø ♀ 49°, Ø♂ 32°) and lumbar bending angles (Ø ♀ 14°, Ø♂ 11°) than the males. The distance between the scapulae was more pronounced in men. These parameters also show an increase with age and BMI, respectively. Pelvic parameters were independent of age and sex. The upper body postures of women and men between the ages of 21 and 60 years were found to be almost symmetrical and axis-conforming with a positive correlation for BMI or age. Consequently, the present body posture parameters allow for comparisons with other studies, as well as for the evaluation of clinical (interim) diagnostics and applications.
Background: In general, the prevalence of work-related musculoskeletal disorders (WMSD) in dentistry is high, and dental assistants (DA) are even more affected than dentists (D). Furthermore, differentiations between the fields of dental specialization (e.g., general dentistry, endodontology, oral and maxillofacial surgery, or orthodontics) are rare. Therefore, this study aims to investigate the ergonomic risk of the aforementioned four fields of dental specialization for D and DA on the one hand, and to compare the ergonomic risk of D and DA within each individual field of dental specialization. Methods: In total, 60 dentists (33 male/27 female) and 60 dental assistants (11 male/49 female) volunteered in this study. The sample was composed of 15 dentists and 15 dental assistants from each of the dental field, in order to represent the fields of dental specialization. In a laboratory setting, all tasks were recorded using an inertial motion capture system. The kinematic data were applied to an automated version of the Rapid Upper Limb Assessment (RULA). Results: The results revealed significantly reduced ergonomic risks in endodontology and orthodontics compared to oral and maxillofacial surgery and general dentistry in DAs, while orthodontics showed a significantly reduced ergonomic risk compared to general dentistry in Ds. Further differences between the fields of dental specialization were found in the right wrist, right lower arm, and left lower arm in DAs and in the neck, right wrist, right lower arm, and left wrist in Ds. The differences between Ds and DAs within a specialist discipline were rather small. Discussion: Independent of whether one works as a D or DA, the percentage of time spent working in higher risk scores is reduced in endodontologists, and especially in orthodontics, compared to general dentists or oral and maxillofacial surgeons. In order to counteract the development of WMSD, early intervention should be made. Consequently, ergonomic training or strength training is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.