The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants.
The design and synthesis of a multivalent gold nanoparticle therapeutic is presented. SDC-1721, a fragment of the potent HIV inhibitor TAK-779, was synthesized and conjugated to 2.0 nm diameter gold nanoparticles. Free SDC-1721 had no inhibitory effect on HIV infection; however, the (SDC-1721)-gold nanoparticle conjugates displayed activity comparable to that of TAK-779. This result suggests that multivalent presentation of small molecules on gold nanoparticle surfaces can convert inactive drugs into potent therapeutics.
While broad spectrum antibiotics play an invaluable role in the treatment of bacterial infections, there are some drawbacks to their use, namely selection for and spread of resistance across multiple bacterial species, and the detrimental effect they can have upon the host microbiome. If the causitive agent of the infection is known, the use of narrow-spectrum antibacterial agents has the potential to mitigate some of these issues. This review outlines the advantages and challenges of narrow-spectrum antibacterial agents, discusses the progress that has been made toward developing diagnostics to enable their use, and describes some of the narrow-spectrum antibacterial agents currently being investigated against some of the most clinically important bacteria including Clostridium difficile, Mycobacterium tuberculosis and several ESKAPE pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.