Environmental factors and the addition of adjuvants to the spray tank mix may interfere with glyphosate efficiency in hairy fleabane control. The objective of this study was to evaluate the effect of air temperature and the addition of ammonium sulfate (NH 4 ) 2 SO 4 to glyphosate in the control of glyphosate-resistant (GR) and -susceptible (GS) hairy fleabane. Treatments consisted of air temperatures of 12°C and 25°C, six doses of glyphosate from zero to 2,880 g • ha −1 , the presence or absence of (NH 4 ) 2 SO 4 in the spray solution, and one GS and another GR biotype. At the lowest tested dose (180 g • ha −1 ), control of the GR biotype was 91% and 20% when the plants were kept at 12°C and 25°C, respectively, reducing the resistance factor (RF) by 9.30 times and was associated to the reduction of temperature. The addition of (NH 4 ) 2 SO 4 increased the control by 10−20% at high glyphosate doses and at 25°C. The resistance of hairy fleabane to glyphosate was completely reversed when the plants were maintained at 12°C. At this temperature, resistant plants were controlled even at doses well below that recommended for the control of this species. At 25°C, a dose four times higher than that recommended was required for satisfactory control. At the field level, under situations of low temperatures, it was possible to improve the efficacy of glyphosate applications in hairy fleabane control, if there were no other mechanisms of resistance involved.
Herbicide mixtures are used to increase the spectrum of weed control and to manage weeds with target-site resistance to some herbicides. However, the effect of mixtures on the evolution of herbicide resistance caused by enhanced metabolism is unknown. This study evaluated the effect of a fenoxaprop-p-ethyl and imazethapyr mixture on the evolution of herbicide resistance in Echinochloa crus-galli using recurrent selection at sublethal doses. The progeny from second generations selected with the mixture had lower control than parental plants or the unselected progeny. GR 50 increased 1.6-and 2.6-fold after two selection cycles with the mixture in susceptible (POP1-S) and imazethapyr-resistant (POP2-IR) biotypes, respectively. There was evidence that recurrent selection with this sublethal mixture had the potential to evolve cross-resistance to diclofop, cyhalofop, sethoxydim, and quinclorac. Mixture selection did not cause increased relative expression for a set of analyzed genes (CYP71AK2, CYP72A122, CYP72A258, CYP81A12, CYP81A14, CYP81A21, CYP81A22, and GST1). Fenoxaprop, rather than imazethapyr, is the main contributor to the decreased control in the progenies after recurrent selection with the mixture in low doses. This is the first study reporting the effect of a herbicide mixture at low doses on herbicide resistance evolution. The lack of control using the mixture may result in decreased herbicide sensitivity of the weed progenies. Using mixtures may select important detoxifying genes that have the potential to metabolize herbicides in patterns that cannot currently be predicted. The use of fully recommended herbicide rates in herbicide mixtures is recommended to reduce the risk of this type of resistance evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.