The calculation of range of motion (ROM) is a key factor during preoperative planning of total hip replacements (THR), to reduce the risk of impingement and dislocation of the artificial hip joint. To support the preoperative assessment of THR, a magnetic resonance imaging (MRI)-based computational framework was generated; this enabled the estimation of patient-specific ROM and type of impingement (bone-to-bone, implant-to-bone, and implant-to-implant) postoperatively, using a three-dimensional computer-aided design (CAD) to visualize typical clinical joint movements. Hence, patient-specific CAD models from 19 patients were generated from MRI scans and a conventional total hip system (Bicontact® hip stem and Plasmacup® SC acetabular cup with a ceramic-on-ceramic bearing) was implanted virtually. As a verification of the framework, the ROM was compared between preoperatively planned and the postoperatively reconstructed situations; this was derived based on postoperative radiographs (n = 6 patients) during different clinically relevant movements. The data analysis revealed there was no significant difference between preoperatively planned and postoperatively reconstructed ROM (∆ROM) of maximum flexion (∆ROM = 0°, p = 0.854) and internal rotation (∆ROM = 1.8°, p = 0.917). Contrarily, minor differences were observed for the ROM during maximum external rotation (∆ROM = 9°, p = 0.046). Impingement, of all three types, was in good agreement with the preoperatively planned and postoperatively reconstructed scenarios during all movements. The calculated ROM reached physiological levels during flexion and internal rotation movement; however, it exceeded physiological levels during external rotation. Patients, where implant-to-implant impingement was detected, reached higher ROMs than patients with bone-to-bone impingement. The proposed framework provides the capability to predict postoperative ROM of THRs.
Total hip joint replacement (THR) is clinically well‐established. In this context, the resulting range of motion (ROM) is crucial for patient satisfaction when performing joint movements. However, the ROM for THR with different bone preserving strategies (short hip stem and hip resurfacing) raises the question of whether the ROM is comparable with conventional hip stems. Therefore, this computer‐based study aimed to investigate the ROM and type of impingement for different implant systems. An established framework with computer‐aided design 3D models based on magnetic resonance imaging data of 19 patients with hip osteoarthritis was used to analyse the ROM for three different implant systems (conventional hip stem vs. short hip stem vs. hip resurfacing) during typical joint movements. Our results revealed that all three designs led to mean maximum flexion higher than 110°. However, hip resurfacing showed less ROM (−5% against conventional and −6% against short hip stem). No significant differences were observed between the conventional and short hip stem during maximum flexion and internal rotation. Contrarily, a significant difference was detected between the conventional hip stem and hip resurfacing during internal rotation (p = 0.003). The ROM of the hip resurfacing was lower than the conventional and short hip stem during all three movements. Furthermore, hip resurfacing shifted the impingement type to implant‐to‐bone impingement compared with the other implant designs. The calculated ROMs of the implant systems achieved physiological levels during maximum flexion and internal rotation. However, bone impingement was more likely during internal rotation with increasing bone preservation. Despite the larger head diameter of hip resurfacing, the ROM examined was substantially lower than that of conventional and short hip stem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.