Seismic-hazard assessment is of great importance within the field of engineering seismology. Nowadays, it is common practice to define future seismic demands using probabilistic seismic-hazard analysis (PSHA). Often it is neither obvious nor transparent how PSHA responds to changes in its inputs. In addition, PSHA relies on many uncertain inputs. Sensitivity analysis (SA) is concerned with the assessment and quantification of how changes in the model inputs affect the model response and how input uncertainties influence the distribution of the model response. Sensitivity studies are challenging primarily for computational reasons; hence, the development of efficient methods is of major importance. Powerful local (deterministic) methods widely used in other fields can make SA feasible, even for complex models with a large number of inputs; for example, automatic/algorithmic differentiation (AD)-based adjoint methods. Recently developed derivative-based global sensitivity measures can combine the advantages of such local SA methods with efficient sampling strategies facilitating quantitative global sensitivity analysis (GSA) for complex models.In our study, we propose and implement exactly this combination. It allows an upper bounding of the sensitivities involved in PSHA globally and, therefore, an identification of the noninfluential and the most important uncertain inputs. To the best of our knowledge, it is the first time that derivative-based GSA measures are combined with AD in practice. In addition, we show that first-order uncertainty propagation using the delta method can give satisfactory approximations of global sensitivity measures and allow a rough characterization of the model output distribution in the case of PSHA. An illustrative example is shown for the suggested derivative-based GSA of a PSHA that uses stochastic ground-motion simulations.
Response spectra are of fundamental importance in earthquake engineering and represent a standard measure in seismic design for the assessment of structural performance. However, unlike Fourier spectral amplitudes, the relationship of response spectral amplitudes to seismological source, path, and site characteristics is not immediately obvious and might even be considered counterintuitive for high oscillator frequencies. The understanding of this relationship is nevertheless important for seismic-hazard analysis. The purpose of the present study is to comprehensively characterize the variation of response spectral amplitudes due to perturbations of the causative seismological parameters. This is done by calculating the absolute parameter sensitivities (sensitivity coefficients) defined as the partial derivatives of the model output with respect to its input parameters. To derive sensitivities, we apply algorithmic differentiation (AD). This powerful approach is extensively used for sensitivity analysis of complex models in meteorology or aerodynamics. To the best of our knowledge, AD has not been explored yet in the seismic-hazard context. Within the present study, AD was successfully implemented for a proven and extensively applied simulation program for response spectra (Stochastic Method SIMulation [SMSIM]) using the TAPENADE AD tool. We assess the effects and importance of input parameter perturbations on the shape of response spectra for different regional stochastic models in a quantitative way. Additionally, we perform sensitivity analysis regarding adjustment issues of groundmotion prediction equations.
The spatio-temporal epidemic type aftershock sequence (ETAS) model is widely used to describe the self-exciting nature of earthquake occurrences. While traditional inference methods provide only point estimates of the model parameters, we aim at a fully Bayesian treatment of model inference, allowing naturally to incorporate prior knowledge and uncertainty quantification of the resulting estimates. Therefore, we introduce a highly flexible, non-parametric representation for the spatially varying ETAS background intensity through a Gaussian process (GP) prior. Combined with classical triggering functions this results in a new model formulation, namely the GP-ETAS model. We enable tractable and efficient Gibbs sampling by deriving an augmented form of the GP-ETAS inference problem. This novel sampling approach allows us to assess the posterior model variables conditioned on observed earthquake catalogues, i.e., the spatial background intensity and the parameters of the triggering function. Empirical results on two synthetic data sets indicate that GP-ETAS outperforms standard models and thus demonstrate the predictive power for observed earthquake catalogues including uncertainty quantification for the estimated parameters. Finally, a case study for the l’Aquila region, Italy, with the devastating event on 6 April 2009, is presented.
Many geomorphic phenomena such as bank failures, landslide dams, riffle‐pool sequences and knickpoints can be modelled as spatial point processes. However, as the locations of these phenomena are constrained to lie on or alongside rivers, their analysis must account for the geometry and topology of river networks. Here, we introduce a new numeric class in TopoToolbox called Point Pattern on Stream networks (PPS), which supports exploratory analysis, statistical modelling, simulation and visualization of point processes. We present three case studies that aim at inferring processes and factors that control the spatial density of geomorphic phenomena along river networks: analysis of a synthetic dataset of points on a stream network, the analysis of knickpoints in river profiles, and modelling spatial locations of beaver dams based on topographic metrics. The case studies rely on exploratory analysis and statistical inference using inhomogeneous Poisson point processes. Thereby, statistical and probabilistic procedures implemented in PPS provide a systematic approach for treating and quantifying uncertainties. PPS offers a consistent numeric framework for modelling point processes on river networks with a wide range of applications in fluvial geomorphology, but also other disciplines such as ecology.
Variational methods are employed in situations where exact Bayesian inference becomes intractable due to the difficulty in performing certain integrals. Typically, variational methods postulate a tractable posterior and formulate a lower bound on the desired integral to be approximated, e.g. marginal likelihood. The lower bound is then optimised with respect to its free parameters, the socalled variational parameters. However, this is not always possible as for certain integrals it is very challenging (or tedious) to come up with a suitable lower bound. Here, we propose a simple scheme that overcomes some of the awkward cases where the usual variational treatment becomes difficult. The scheme relies on a rewriting of the lower bound on the model log-likelihood. We demonstrate the proposed scheme on a number of synthetic and real examples, as well as on a real geophysical model for which the standard variational approaches are inapplicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.