We present novel sufficient conditions for the global stability of equilibria in the case of nonlinear dynamics with analytic vector fields. These conditions provide stability criteria that are directly expressed in terms of the Taylor expansion coefficients of the vector field (e.g. in terms of first order coefficients, maximal coefficient, sum of coefficients). Our main assumptions is that the flow be holomorphic, and the linearized system be locally exponentially stable and diagonalizable. These results are based on the properties of the Koopman operator defined on the Hardy space on the polydisc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.