Abstract. Knowledge compilation is a compelling technique for dealing with the intractability of propositional reasoning. One particularly effective target language is Deterministic Decomposable Negation Normal Form (d-DNNF). We exploit recent advances in #SAT solving in order to produce a new state-ofthe-art CNF → d-DNNF compiler: DSHARP. Empirical results demonstrate that DSHARP is generally an order of magnitude faster than C2D, the de facto standard for compiling to d-DNNF, while yielding a representation of comparable size.
We address the problem of computing a policy for fully observable non-deterministic (FOND) planning problems. By focusing on the relevant aspects of the state of the world, we introduce a series of improvements to the previous state of the art and extend the applicability of our planner, PRP, to work in an online setting. The use of state relevance allows our policy to be exponentially more succinct in representing a solution to a FOND problem for some domains. Through the introduction of new techniques for avoiding deadends and determining sufficient validity conditions, PRP has the potential to compute a policy up to several orders of magnitude faster than previous approaches. We also find dramatic improvements over the state of the art in online replanning when we treat suitable probabilistic domains as FOND domains.
Temporal logics are useful for providing concise descriptions of system behavior, and have been successfully used as a language for goal definitions in task planning. Prior works on inferring temporal logic specifications have focused on "summarizing" the input dataset - i.e., finding specifications that are satisfied by all plan traces belonging to the given set. In this paper, we examine the problem of inferring specifications that describe temporal differences between two sets of plan traces. We formalize the concept of providing such contrastive explanations, then present BayesLTL - a Bayesian probabilistic model for inferring contrastive explanations as linear temporal logic (LTL) specifications. We demonstrate the robustness and scalability of our model for inferring accurate specifications from noisy data and across various benchmark planning domains.
Many AI applications involve the interaction of multiple autonomous agents, requiring those agents to reason about their own beliefs, as well as those of other agents. However, planning involving nested beliefs is known to be computationally challenging. In this work, we address the task of synthesizing plans that necessitate reasoning about the beliefs of other agents. We plan from the perspective of a single agent with the potential for goals and actions that involve nested beliefs, non-homogeneous agents, co-present observations, and the ability for one agent to reason as if it were another. We formally characterize our notion of planning with nested belief, and subsequently demonstrate how to automatically convert such problems into problems that appeal to classical planning technology. Our approach represents an important first step towards applying the well-established field of automated planning to the challenging task of planning involving nested beliefs of multiple agents.
Abstract. Quantitative information flow analysis (QIF) is a portfolio of security techniques quantifying the flow of confidential information to public ports. In this paper, we advance the state of the art in QIF for imperative programs. We present both an abstract formulation of the analysis in terms of verification condition generation, logical projection and model counting, and an efficient concrete implementation targeting ANSI C programs. The implementation combines various novel and existing SAT-based tools for bounded model checking, # SAT solving in presence of projection, and SAT preprocessing. We evaluate the technique on synthetic and semi-realistic benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.