Objective To obtain large scale and generalisable data on the long term predictive value of cytology and human papillomavirus (HPV) testing for development of cervical intraepithelial neoplasia grade 3 or cancer (CIN3+). Design Multinational cohort study with joint database analysis. Setting Seven primary HPV screening studies in six European countries. Participants 24 295 women attending cervical screening enrolled into HPV screening trials who had at least one cervical cytology or histopathology examination during follow-up. Main outcome measure Long term cumulative incidence of CIN3+. Results The cumulative incidence rate of CIN3+ after six years was considerably lower among women negative for HPV at baseline (0.27%, 95% confidence interval 0.12% to 0.45%) than among women with negative results on cytology (0.97%, 0.53% to 1.34%)). By comparison, the cumulative incidence rate for women with negative cytology results at the most commonly recommended screening interval in Europe (three years) was 0.51% (0.23% to 0.77%). The cumulative incidence rate among women with negative cytology results who were positive for HPV increased continuously over time, reaching 10% at six years, whereas the rate among women with positive cytology results who were negative for HPV remained below 3%. Conclusions A consistently low six year cumulative incidence rate of CIN3+ among women negative for HPV suggests that cervical screening strategies in which women are screened for HPV every six years are safe and effective.
Background More than ten years have elapsed since human papillomavirus (HPV) vaccination was implemented. We performed a systematic review and meta-analysis of the population-level impact of female-only HPV vaccination on HPV infections, anogenital wart diagnoses (AGW) and cervical intraepithelial neoplasia grade 2+ (CIN2+) to summarise the most recent evidence about the effectiveness of HPV vaccines in real-world settings and to quantify the impact of multiple age-cohort vaccination. Methods We updated our prior review (01/01/2007-28/02/2014), by searching Medline and Embase (01/02/2014-11/10/2018) for studies that examined changes, between pre-and post-vaccination periods, in HPV infections, AGW, or CIN2+. We stratified all analyses by sex, age, and years since HPV vaccination introduction. We used random-effects models to estimate pooled relative risks and performed subgroup analysis to identify the main sources of heterogeneity. Findings We identified 65 eligible articles conducted in 14 high-income countries. After 5-8 years of vaccination, HPV-16/18, AGW, and CIN2+ decreased significantly by about 80%, 70%, and 50% among girls aged 15-19 years and by 65%, 55%, and 30% among women aged 20-24 years. Significant cross-protection and herd effects were also observed. HPV-31/33/45 decreased significantly by 50% among girls aged 15-19 years and AGW decreased significantly by 30-50% among boys/men aged 15-24 years. After 5-8 years of vaccination, countries with multi-cohort vaccination and high coverage (≥50%) had greater reductions in AGW, 44 and 85 percentage points among girls and boys aged 15-19 years, respectively, than countries with single-cohort vaccination and/or low vaccination coverage. Interpretation Our meta-analysis, including data from >60 million individuals from 14 high-income countries, shows a substantial impact of female-only HPV vaccination programs on AGW among girls/women and boys/men, and HPV infections and CIN2+ among girls/women. In addition, programs with multi-cohort vaccination and high vaccination coverage lead to greater and faster direct impact and herd effects. CONTRIBUTIONS MD, MB, and MCB conceived the study. MD, EB and NP did the literature search and performed the analysis. MB and MCB participated in the analysis. MD and MB co-drafted the first version of the article.
HPV16, HPV18, HPV31, and HPV33 infection and especially HPV16 persistence were associated with high absolute risks for progression to high-grade cervical lesions. The results indicate the potential value of genotyping in cervical cancer screening. Given that HPV DNA-negative women retained their low risk of CIN3 or worse for many years, frequent screening of these women may be unnecessary.
G protein-coupled receptors are the most abundant mediators of both human signalling processes and therapeutic effects. Herein, we report GPCRome-wide homology models of unprecedented quality, and roughly 150 000 GPCR ligands with data on biological activities and commercial availability. Based on the strategy of ‘Less model – more Xtal’, each model exploits both a main template and alternative local templates. This achieved higher similarity to new structures than any of the existing resources, and refined crystal structures with missing or distorted regions. Models are provided for inactive, intermediate and active states—except for classes C and F that so far only have inactive templates. The ligand database has separate browsers for: (i) target selection by receptor, family or class, (ii) ligand filtering based on cross-experiment activities (min, max and mean) or chemical properties, (iii) ligand source data and (iv) commercial availability. SMILES structures and activity spreadsheets can be downloaded for further processing. Furthermore, three recent landmark publications on GPCR drugs, G protein selectivity and genetic variants have been accompanied with resources that now let readers view and analyse the findings themselves in GPCRdb. Altogether, this update will enable scientific investigation for the wider GPCR community. GPCRdb is available at http://www.gpcrdb.org.
G protein-coupled receptors (GPCRs) form both the largest family of membrane proteins and drug targets, mediating the action of one-third of medicines. The GPCR database, GPCRdb serves >4 000 researchers every month and offers reference data, analysis of own or literature data, experiment design and dissemination of published datasets. Here, we describe new and updated GPCRdb resources with a particular focus on integration of sequence, structure and function. GPCRdb contains all human non-olfactory GPCRs (and >27 000 orthologs), G-proteins and arrestins. It includes over 2 000 drug and in-trial agents and nearly 200 000 ligands with activity and availability data. GPCRdb annotates all published GPCR structures (updated monthly), which are also offered in a refined version (with re-modeled missing/distorted regions and reverted mutations) and provides structure models of all human non-olfactory receptors in inactive, intermediate and active states. Mutagenesis data in the GPCRdb spans natural genetic variants, GPCR-G protein interfaces, ligand sites and thermostabilising mutations. A new sequence signature tool for identification of functional residue determinants has been added and two data driven tools to design ligand site mutations and constructs for structure determination have been updated extending their coverage of receptors and modifications. The GPCRdb is available at https://gpcrdb.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.