We consider subregion complexity within the AdS3/CFT2 correspondence. We rewrite the volume proposal, according to which the complexity of a reduced density matrix is given by the spacetime volume contained inside the associated Ryu‐Takayanagi (RT) surface, in terms of an integral over the curvature. Using the Gauss‐Bonnet theorem we evaluate this quantity for general entangling regions and temperature. In particular, we find that the discontinuity that occurs under a change in the RT surface is given by a fixed topological contribution, independent of the temperature or details of the entangling region. We offer a definition and interpretation of subregion complexity in the context of tensor networks, and show numerically that it reproduces the qualitative features of the holographic computation in the case of a random tensor network using its relation to the Ising model. Finally, we give a prescription for computing subregion complexity directly in CFT using the kinematic space formalism, and use it to reproduce some of our explicit gravity results obtained at zero temperature. We thus obtain a concrete matching of results for subregion complexity between the gravity and tensor network approaches, as well as a CFT prescription.
We consider the computation of volumes contained in a spatial slice of AdS 3 in terms of observables in a dual CFT. Our main tool is kinematic space, defined either from the bulk perspective as the space of oriented bulk geodesics, or from the CFT perspective as the space of entangling intervals. We give an explicit formula for the volume of a general region in a spatial slice of AdS 3 as an integral over kinematic space. For the region lying below a geodesic, we show how to write this volume purely in terms of entangling entropies in the dual CFT. This expression is perhaps most interesting in light of the complexity = volume proposal, which posits that complexity of holographic quantum states is computed by bulk volumes. An extension of this idea proposes that the holographic subregion complexity of an interval, defined as the volume under its Ryu-Takayanagi surface, is a measure of the complexity of the corresponding reduced density matrix. If this is true, our results give an explicit relationship between entanglement and subregion complexity in CFT, at least in the vacuum. We further extend many of our results to conical defect and BTZ black hole geometries.
We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.
Recently, remarkable progress in recovering the Page curve of an evaporating black hole (BH) in Jackiw-Teitelboim gravity has been achieved through use of Quantum Extremal surfaces (QES). Multi-boundary Wormhole (MbW) models have been crucial in parallel model building in three dimensions. Motivated by this we here use the latter models to compute the subregion complexity of the Hawking quanta of the evaporating BH in AdS3 and obtain the Page curve associated with this information theoretic measure. We use three- and n-boundary wormhole constructions to elucidate our computations of volumes below the Hubeny-Rangamani-Takayanagi (HRT) surfaces at different times. Time is represented by the growing length of the throat horizons corresponding to smaller exits of the multi-boundary wormhole and the evaporating bigger exit shrinks with evolving time. We track the change in choice of HRT surfaces with time and plot the volume with time. The smooth transition of Page curve is realized by a discontinuous jump at Page time in volume subregion complexity plots and the usual Page transition is realized as a phase transition due to the inclusion of the island in this context. We discuss mathematical intricacies and physical insights regarding the inclusion of the extra volume at Page time. The analysis is backed by calculations and lessons from kinematic space and tensor networks.
We test the proposal of [1] for the holographic computation of the charged moments and the resulting symmetry-resolved entanglement entropy in different excited states, as well as for two entangling intervals. Our holographic computations are performed in U(1) Chern-Simons-Einstein-Hilbert gravity, and are confirmed by independent results in a conformal field theory at large central charge. In particular, we consider two classes of excited states, corresponding to charged and uncharged conical defects in AdS3. In the conformal field theory, these states are generated by the insertion of charged and uncharged heavy operators. We employ the monodromy method to calculate the ensuing four-point function between the heavy operators and the twist fields. For the two-interval case, we derive our results on the AdS and the conformal field theory side, respectively, from the generating function method of [1], as well as the vertex operator algebra. In all cases considered, we find equipartition of entanglement between the different charge sectors. We also clarify an aspect of conformal field theories with a large central charge and $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry used in our calculations, namely the factorization of the Hilbert space into a gravitational Virasoro sector with large central charge, and a $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.