Meningiomas are the most common intracranial tumor, making up more than a third of all primary central nervous system (CNS) tumors. They are mostly benign tumors that can be observed or preferentially treated with gross total resection that provides good outcomes. Meningiomas with complicated histology or in compromising locations has proved to be a challenge in treating and predicting prognostic outcomes. Advances in genomics and molecular characteristics of meningiomas have uncovered potential use for more accurate grading and prediction of prognosis and recurrence. With the study and detection of genomic aberrancies, specific biologic targets are now being trialed for possible management of meningiomas that are not responsive to standard surgery and radiotherapy treatment. This review summarizes current epidemiology, etiology, molecular characteristics, diagnosis, treatments, and current treatment trials.
Background: Orbital metastases often lead to severe functional impairment. The role of resection, orbital exenteration, and complementary treatments is still debated. We systematically reviewed the literature on orbital metastases. Methods: PubMed, Scopus, Web-of-Science, and Cochrane were searched upon PRISMA guidelines to identify studies on orbital metastases. Clinical characteristics, management strategies, and survival were analyzed. Results: We included 262 studies comprising 873 patients. Median age was 59 years. The most frequent primary tumors were breast (36.3%), melanoma (10.1%), and prostate (8.5%) cancers, with median time interval of 12 months (range, 0–420). The most common symptoms were proptosis (52.3%) and relative-afferent-pupillary-defect (38.7%). Most metastases showed a diffuse location within the orbit (19%), with preferential infiltration of orbital soft tissues (40.2%). In 47 cases (5.4%), tumors extended intracranially. Incisional biopsy (63.7%) was preferred over fine-needle aspiration (10.2%), with partial resection (16.6%) preferred over complete (9.5%). Orbital exenteration was pursued in 26 patients (3%). A total of 305 patients (39.4%) received chemotherapy, and 506 (58%) received orbital radiotherapy. Post-treatment symptom improvement was significantly superior after resection (p = 0.005) and orbital radiotherapy (p = 0.032). Mean follow-up was 14.3 months, and median overall survival was 6 months. Fifteen cases (1.7%) demonstrated recurrence with median local control of six months. Overall survival was statistically increased in patients with breast cancer (p < 0.001) and in patients undergoing resection (p = 0.024) but was not correlated with orbital location (p = 0.174), intracranial extension (p = 0.073), biopsy approach (p = 0.344), extent-of-resection (p = 0.429), or orbital exenteration (p = 0.153). Conclusions: Orbital metastases severely impair patient quality of life. Surgical resection safely provides symptom and survival benefit compared to biopsy, while orbital radiotherapy significantly improves symptoms compared to not receiving radiotherapy.
Background: The development of [68Ga]Ga-DOTA-SSTR PET tracers has garnered interest in neuro-oncology, to increase accuracy in diagnostic, radiation planning, and neurotheranostics protocols. We systematically reviewed the literature on the current uses of [68Ga]Ga-DOTA-SSTR PET in brain tumors. Methods: PubMed, Scopus, Web of Science, and Cochrane were searched in accordance with the PRISMA guidelines to include published studies and ongoing trials utilizing [68Ga]Ga-DOTA-SSTR PET in patients with brain tumors. Results: We included 63 published studies comprising 1030 patients with 1277 lesions, and 4 ongoing trials. [68Ga]Ga-DOTA-SSTR PET was mostly used for diagnostic purposes (62.5%), followed by treatment planning (32.7%), and neurotheranostics (4.8%). Most lesions were meningiomas (93.6%), followed by pituitary adenomas (2.8%), and the DOTATOC tracer (53.2%) was used more frequently than DOTATATE (39.1%) and DOTANOC (5.7%), except for diagnostic purposes (DOTATATE 51.1%). [68Ga]Ga-DOTA-SSTR PET studies were mostly required to confirm the diagnosis of meningiomas (owing to their high SSTR2 expression and tracer uptake) or evaluate their extent of bone invasion, and improve volume contouring for better radiotherapy planning. Some studies reported the uncommon occurrence of SSTR2-positive brain pathology challenging the diagnostic accuracy of [68Ga]Ga-DOTA-SSTR PET for meningiomas. Pre-treatment assessment of tracer uptake rates has been used to confirm patient eligibility (high somatostatin receptor-2 expression) for peptide receptor radionuclide therapy (PRRT) (i.e., neurotheranostics) for recurrent meningiomas and pituitary carcinomas. Conclusion: [68Ga]Ga-DOTA-SSTR PET studies may revolutionize the routine neuro-oncology practice, especially in meningiomas, by improving diagnostic accuracy, delineation of radiotherapy targets, and patient eligibility for radionuclide therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.