Monitoring of the state of charge of the thermal energy storage component in solar thermal systems for space heating and/or cooling in residential buildings is a key element from the overall system control strategy point of view. According to the literature, there is not a unique method for determining the state of charge of a thermal energy storage system that could generally be applied in any system. This contribution firstly provides a classification of the state-of-the-art of available techniques for the determination of the state of charge, and secondly, it presents an experimental analysis of different methods based on established sensor technologies, namely temperature, mass flow rates, and pressure measurements, tested using a lab-scale heat exchanger filled with a commercial phase change material for cooling applications. The results indicate that, depending on the expected accuracy and available instrumentation, each of the methods studied here can be used in the present application, the deviations between the methods generally being below 20%. This study concludes that a proper combination of two or more of these methods would be the ideal strategy to obtain a more reliable and accurate estimation of the state of charge of the latent heat thermal energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.