Hierarchical, macro-mesoporous silica monoliths with domain sizes (sum of mean macropore size and skeleton thickness) of ∼1 μm are highly efficient supports in heterogeneous catalysis with single-phase liquid flow. Their unprecedented performance regarding low backmixing, the elimination of internal and external diffusive transport limitations, as well as the simultaneous realization of a large (internal and external) surface area of the monolith skeleton allow reactor operation under exclusive reaction control. For experimental characterization, the Knoevenagel condensation was employed with an aminopropylated silica monolith integrated into an on-line coupled, high-pressure reaction-analysis system. It allows precise, fully automated adjustment and control of all relevant reaction parameters and promises a boost in the rapid, reproducible determination of the intrinsic reaction kinetics, in general. Hydrodynamic and reaction kinetic parameters identify extreme plug-flow conditions with this high-surface-area, compact type of microreactor and quasi-homogeneous operation in continuous-flow mode.
The proposed scheme enables academic laboratories to prepare hierarchical silica monoliths as continuous-flow microreactors for kinetic studies in heterogeneous catalysis.
We report on the use of a 2 nd -generation Hoveyda-Grubbs-type catalyst immobilized inside mesoporous silica for the application in selective macro(mono)cyclization (MMC) of an α,ω-diene under spatially confined and continuous-flow conditions. Reactions carried out with different flow rates allow for variations in residence time; conversion and MMC selectivity can be determined for well-defined reaction times. Analysis of the reaction mixtures obtained for different reaction times and temperatures in a single flow experiment by NMR and MALDI-TOF-MS allows to address confinement effects and to determine olefin metathesis pathways. These investigations revealed that ring-chain equilibria are quickly established but substantially affected by residence time and flow, allowing for the determination of conditions under which MMC selectivity reaches a maximum. In contrast to reactions carried out in solution, in which oligomers up to the hexamer were observed, MMC under confinement predominantly proceeds via ring-closing metathesis of the monomer and backbiting from the dimer and trimer, but not from higher oligomers as their formation is suppressed. This leads to the observed high MMC selectivity, reaching 60 % at a 25 mM substrate concentration.
Systematic wavelength screening with 16 LED arrays in a continuous-flow photoreactor revealed different reaction channels for the perfluoroalkylation of 2-methylindole, which were transferred into independent synthetic routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.