Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2Kb is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2Kb in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).
The discovery of pyrrolopyrazines as potent antimalarial agents is presented, with the most effective compounds exhibiting EC50 values in the low nanomolar range against asexual blood stages of Plasmodium falciparum in human red blood cells, and Plasmodium berghei liver schizonts, with negligible HepG2 cytotoxicity. Their potential mode of action is uncovered by predicting macromolecular targets through avant-garde computer modeling. The consensus prediction method suggested a functional resemblance between ligand binding sites in non-homologous target proteins, linking the observed parasite elimination to IspD, an enzyme from the non-mevalonate pathway of isoprenoid biosynthesis, and multi-kinase inhibition. Further computational analysis suggested essential P. falciparum kinases as likely targets of our lead compound. The results obtained validate our methodology for ligand- and structure-based target prediction, expand the bioinformatics toolbox for proteome mining, and provide unique access to deciphering polypharmacological effects of bioactive chemical agents.
Drug discovery programs urgently seek new chemical entities that meet the needs of a demanding pharmaceutical industry. Consequently, de novo ligand design is currently re-emerging as a noveltygenerating approach. Using ligand-based de novo design software, we computationally generated, chemically synthesized and biochemically tested a new arylsulfonamide against Aurora A kinase, a validated drug target in several types of cancer. The designed compound exhibited desired direct inhibitory activity against Aurora A kinase. By chemical optimization we obtained a lead structure exhibiting sustained activity in phenotypic assays. These results emphasize the potential of ligand-based de novo design to consistently deliver functional new chemotypes within short timeframes and limited effort.
A potent and selective inhibitor of the anticancer target Polo-like kinase 1 was found by computer-based molecular design. This type II kinase inhibitor was synthesized as suggested by the design software DOGS and exhibited significant antiproliferative effects against HeLa cells without affecting nontransformed cells. The study provides a proof-of-concept for reaction-based de novo design as a leading tool for drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.