Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified β-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 × 10 −12). β-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific β-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.
Summary α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in Parkinson’s disease. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that fPD-causing missense mutations shift tetramers to aggregation-prone monomers. Here, we generated mice expressing the fPD E46K mutation plus 2 homologous E→K mutations in adjacent KTKEGV motifs. This tetramer-abrogating mutant causes phenotypes similar to PD. αS monomers accumulate at membranes and form vesicle-rich inclusions. αS becomes insoluble, proteinase K-resistant, Ser129-phosphorylated and C-terminally truncated, as in PD. These changes affect regions controlling motor behavior, including decrease in nigrostriatal dopaminergic neurons. The outcome is a progressive motor syndrome including tremor and gait and limb deficits responsive to L-DOPA. This fully-penetrant phenotype indicates that tetramers are required for normal αS homeostasis and chronically shifting tetramers to monomers may result in PD, with attendant therapeutic implications.
Major depressive disorder (MDD) is a common and severe disease characterized by mood changes, somatic alterations, and often suicide. MDD is treated with antidepressants, but the molecular mechanism of their action is unknown. We found that widely used antidepressants such as amitriptyline and fluoxetine induce autophagy in hippocampal neurons via the slow accumulation of sphingomyelin in lysosomes and Golgi membranes and of ceramide in the endoplasmic reticulum (ER). ER ceramide stimulates phosphatase 2A and thereby the autophagy proteins Ulk, Beclin, Vps34/Phosphatidylinositol 3-kinase, p62, and Lc3B. Although treatment with amitriptyline or fluoxetine requires at least 12 days to achieve sphingomyelin accumulation and the subsequent biochemical and cellular changes, direct inhibition of sphingomyelin synthases with tricyclodecan-9-yl-xanthogenate (D609) results in rapid (within 3 days) accumulation of ceramide in the ER, activation of autophagy, and reversal of biochemical and behavioral signs of stress-induced MDD. Inhibition of Beclin blocks the antidepressive effects of amitriptyline and D609 and induces cellular and behavioral changes typical of MDD. These findings identify sphingolipid-controlled autophagy as an important target for antidepressive treatment methods and provide a rationale for the development of novel antidepressants that act within a few days.
There is recognition that biomedical research into the causes of mental disorders and their treatment needs to adopt new approaches to research. Novel biomedical techniques have advanced our understanding of how the brain develops and is shaped by behaviour and environment. This has led to the advent of stratified medicine, which translates advances in basic research by targeting aetiological mechanisms underlying mental disorder. The resulting increase in diagnostic precision and targeted treatments may provide a window of opportunity to address the large public health burden, and individual suffering associated with mental disorders. While mental health and mental disorders have significant representation in the "health, demographic change and wellbeing" challenge identified in Horizon 2020, the framework programme for research and innovation of the European Commission (2014-2020), and in national funding agencies, clear advice on a potential strategy for mental health research investment is needed. The development of such a strategy is supported by the EC-funded "Roadmap for Mental Health Research" (ROAMER) which will provide recommendations for a European mental health research strategy integrating the areas of biomedicine, psychology, public health well being, research integration and structuring, and stakeholder participation. Leading experts on biomedical research on mental disorders have provided an assessment of the state of the art in core psychopathological domains, including arousal and stress regulation, affect, cognition social processes, comorbidity and pharmacotherapy. They have identified major advances and promising methods and pointed out gaps to be addressed in order to achieve the promise of a stratified medicine for mental disorders.
Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking—but not forced alcohol exposure—reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-016-1658-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.