Composites and hybrid composites were manufactured from renewable materials based on jute fibers, regenerated cellulose fibers (Lyocell), and thermosetting polymer from soybean oil. Three different types of jute fabrics with biaxial weave architecture but different surface weights, and carded Lyocell fiber were used as reinforcements. Hybrid composites were also manufactured by combining the jute reinforcements with the Lyocell. The Lyocell composite was found to have better mechanical properties than other composites. It has tensile strength and modulus of about 144 MPa and 18 GPa, respectively. The jute composites also have relatively good mechanical properties, as their tensile strengths and moduli were found to be between 65 and 84 MPa, and between 14 and 19 GPa, respectively. The Lyocell-reinforced composite showed the highest flexural strength and modulus, of about 217 MPa and 13 GPa, respectively. In all cases, the hybrid composites in this study showed improved mechanical properties but lower storage modulus. The Lyocell fiber gave the highest impact strength of about 35 kJ/m 2 , which could be a result of its morphology. Dynamic mechanical analysis showed that the Lyocell reinforced composite has the best viscoelastic properties.
A bio-based thermoset resin was reinforced with flax fabrics and Lyocell fiber. The effect of different weave architectures was studied with four flax fabrics with different architectures: plain, twill (two different types), and dobby. The effect of the outer ply thickness was studied and characterized with flexural and impact testing. Composites manufactured with plain weave reinforcement had the best mechanical properties. The tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength were 280 MPa, 32 GPa, 250 MPa, 25 GPa, and 75 kJ/m 2 , respectively. Reinforcements with twill-weave architecture did not impart appreciable flexural strength or flexural modulus even when the outer thickness was increased. Plain-and dobby (basket woven style)-weave architectures gave better reinforcing effects and the flexural properties increased with an increase in outer thickness. Water absorption properties of the composites were studied and it was observed that the hybridization with Lyocell fiber reduced the water uptake. Fieldemission scanning electron microscopy was used to study the micro-structural properties of the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.