We analyze the uncertainty of the coefficient of band-to-band absorption of crystalline silicon. For this purpose, we determine the absorption coefficient at room temperature (295 K) in the wavelength range from 250 to 1450 nm using four different measurement methods. The data presented in this work derive from spectroscopic ellipsometry, measurements of reflectance and transmittance, spectrally resolved luminescence measurements and spectral responsivity measurements. A systematic measurement uncertainty analysis based on the Guide to the expression of uncertainty in measurement (GUM) as well as an extensive characterization of the measurement setups are carried out for all methods. We determine relative uncertainties of the absorption coefficient of 0.4% at 250 nm, 11% at 600 nm, 1.4% at 1000 nm, 12% at 1200 nm and 180% at 1450 nm. The data are consolidated by intercomparison of results obtained at different institutions and using different measurement approaches.
Polarization is an important tool to further the understanding of interstellar dust and the sources behind it. In this paper we describe our implementation of polarization that is due to scattering of light by spherical grains and electrons in the dust Monte Carlo radiative transfer code SKIRT. In contrast to the implementations of other Monte Carlo radiative transfer codes, ours uses co-moving reference frames that rely solely on the scattering processes. It fully supports the peel-off mechanism that is crucial for the efficient calculation of images in 3D Monte Carlo codes. We develop reproducible test cases that push the limits of our code. The results of our program are validated by comparison with analytically calculated solutions. Additionally, we compare results of our code to previously published results. We apply our method to models of dusty spiral galaxies at near-infrared and optical wavelengths. We calculate polarization degree maps and show them to contain signatures that trace characteristics of the dust arms independent of the inclination or rotation of the galaxy.
It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.
Context. The Monte Carlo method is the most widely used method to solve radiative transfer problems in astronomy, especially in a fully general 3D geometry. A crucial concept in any Monte Carlo radiative transfer code is the random generation of the next interaction location. In polarised Monte Carlo radiative transfer with aligned non-spherical grains, the nature of dichroism complicates the concept of optical depth. Aims. We investigate in detail the relation between optical depth and the optical properties and density of the attenuating medium in polarised Monte Carlo radiative transfer codes that take into account dichroic extinction. Methods. Based on solutions for the radiative transfer equation, we discuss the optical depth scale in polarised radiative transfer with spheroidal grains. We compare the dichroic optical depth to the extinction and total optical depth scale. Results. In a dichroic medium, the optical depth is not equal to the usual extinction optical depth, nor to the total optical depth. For representative values of the optical properties of dust grains, the dichroic optical depth can differ from the extinction or total optical depth by several ten percent. A closed expression for the dichroic optical depth cannot be given, but it can be derived efficiently through an algorithm that is based on the analytical result corresponding to elongated grains with a uniform grain alignment.Conclusions. Optical depth is more complex in dichroic media than in systems without dichroic attenuation, and this complexity needs to be considered when generating random free path lengths in Monte Carlo radiative transfer simulations. There is no benefit in using approximations instead of the dichroic optical depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.