Pb, Zn, Cd and Cu have been measured using ultraclean procedures in various sections of a 70.3‐m snow/ice core covering the past 220 years (including the Industrial Revolution) drilled at Summit, central Greenland. These time series are the first reliable ones ever published for Zn, Cd, and Cu; for Pb they are the first verification of the pioneering data published more than two decades ago by C. Patterson and his coworkers [Murozumi et al., 1969]. For all four heavy metals, concentrations are found to have markedly increased up until the 1960s and 1970s before decreasing significantly during the following few decades. The timing and the amplitude of the observed changes differ significantly however from one metal to another. Comparison with concentration values obtained by analyzing ancient Holocene ice dated 7760 years B.P., that is, before humans started to impact on the atmosphere, show that no detectable increase occurred for Zn, Cd, and Cu before the Industrial Revolution. On the other hand, Pb concentrations were already one order of magnitude above natural values in late 18th century ice. Cumulative deposition of heavy metals to the whole Greenland ice cap since the Industrial Revolution ranges from 3200 t for Pb to 60 t for Cd.
International audienceAn experimental study of hydrodynamic cavitation downstream microdiaphragms and microventuris is presented. Deionized water and nanofluids have been characterized within silicon-Pyrex micromachined devices with hydraulic diameters ranging from 51 μm to 104 μm. The input pressure could reach up to 10 bars, and the flow rate was below 1 liter per hour. The output pressure of the devices was fixed at values ranging from 0.3 bar to 2 bars, so that it was possible to study the evolution of the cavitation number as a function of the Reynolds number in the orifice of the diaphragms or in the throat of the venturis. A delay on the onset of cavitation has been recorded for all the devices when they are fed with deionized water, because of the metastability of the liquid and because of the lack of roughness of the walls. For the first time, hydrodynamic cavitation of nanofluids (nanoparticles dispersed into the liquid) has been considered. The presence of nano-aggregates in the liquid does not exhibit any noticeable effect on the cavitation threshold through the venturis. However, such a presence has a strong influence on the cavitation onset in microdiaphragms: above a critical volume solid concentration of ≈10−5, the metastability is broken and the nanofluids behave as tap water filled up with large nuclei. These microdevices, where a low amount of fluid is required to reach cavitating flows, appear to be useful tools in order to study cavitating phenomena in localized area with specific fluids
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.