The major cortical-subcortical re-entrant pathways through the basal ganglia and cerebellum are considered to represent anatomically segregated channels for information originating in different cortical areas. A capacity for integrating unique combinations of cortical inputs has been well documented in the basal ganglia circuits but is largely undefined in the precerebellar circuits. To compare and quantify the amount of overlap that occurs in the first link of the cortico-ponto-cerebellar pathway, a dual tracing approach was used to map the spatial relationship between projections originating from the primary somatosensory cortex (SI), the secondary somatosensory cortex (SII), and the primary motor cortex (MI). The anterograde tracers biotinylated dextran amine and Fluoro-Ruby were injected into homologous whisker representations of either SI and SII, or SI and MI. The ensuing pontine labeling patterns were analyzed using a computerized three-dimensional reconstruction approach. The results demonstrate that whisker-related projections from SI and MI are largely segregated. At some locations, the two projections are adjoining and partly overlapping. Furthermore, SI contributes significantly more corticopontine projections than MI. By comparison, projections from corresponding representations in SI and SII terminate in similar parts of the pontine nuclei and display considerable amounts of spatial overlap. Finally, comparison of corticopontine and corticostriatal projections in the same experimental animals reveals that SI-SII overlap is significantly larger in the pontine nuclei than in the neostriatum. These structural differences indicate a larger capacity for integration of information within the same sensory modality in the pontocerebellar system compared to the basal ganglia.
This article presents a computer program, Micro3D, designed for 3-D reconstruction, visualization, and analysis of coordinate-data (points and lines) recorded from serial sections. The software has primarily been used for studying shapes and dimension of brain regions (contour line data) and distributions of cellular elements such as neuronal cell bodies or axonal terminal fields labeled with tract-tracing techniques (point data). The tissue elements recorded could equally well be labeled with use of other techniques, the only requirement being that the data collected are saved as x,y,z coordinates. Data are typically imported from image-combining computerized microscopy systems or image analysis systems, such as Neurolucida (MicroBrightField, Colchester, VT) or analySIS (Soft Imaging System, Gmbh, Münster, Germany). System requirements are a PC running LINUX. Reconstructions in Micro3D may be rotated and zoomed in real-time, and submitted to perspective viewing and stereo-imaging. Surfaces are re-synthesized on the basis of stacks of contour lines. Clipping is used for defining section-independent subdivisions of the reconstruction. Flattening of curved sheets of points layers (e.g., neurons in a layer) facilitates inspection of complicated distribution patterns. Micro3D computes color-coded density maps. Opportunities for translation of data from different reconstructions into common coordinate systems are also provided. This article demonstrates the use of Micro3D for visualization of complex neuronal distribution patterns in somatosensory and auditory systems. The software is available for download on conditions posted at the NeSys home pages (http://www.nesys.uio.no/) and at The Rodent Brain Workbench (http://www.rbwb.org/).
“Legal geography” encapsulates a breadth of scholarship. Within legal geography, there is considerable debate as to what the boundaries of law and geography are and should be. Some scholars argue that legal geography is a nascent subdiscipline of human geography. Others argue that more than a discipline, legal geography is an intellectual commitment to a particular kind of multidisciplinary engagement with the law. With such a seemingly divergent set of interests, defining the bounds of legal geography can be challenging. Throughout the literature on legal geography there is a consistent thread: legal geography concerns the co-constitution of law, space, and power. Legal geography is a law-in-society approach, meaning that scholarship in legal geography is concerned with law’s central relationship to social processes; law cannot be understood outside of the spatial and temporal social, political, and economic conditions of its production. In this work, law is defined along three, often overlapping lines: law as process, law as text, and law as practice—each with a focus on law as a mechanism of power in law and (in)justice in society. Existing scholarship has focused on questions of environment; courtroom architecture; human rights; neoliberal globalization; property relations and the right to the city; colonialism and postcolonialism; race, migration, and citizenship; and methodological considerations. It has often centered on the law as a practice of Global North state power. Recent calls by North American legal geographers and existing work by Australian legal geographers has begun to push legal geography into new terrain: spaces outside the Global North. Recent engagement with feminist scholarship has also provided new opportunities to explore the spatially uneven gendered and embodied effects of law. This work, with its international and intersectional approach, provides important direction for the future of legal geography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.