Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development.
Patterns in the diversity of bacterial communities associated with three species of Acropora (Acropora millepora, Acropora tenuis and Acropora valida) were compared at two locations (Magnetic Island and Orpheus Island) on the Great Barrier Reef to better understand the nature and specificity of coral-microbial symbioses. Three culture-independent techniques demonstrated consistent bacterial communities among replicate samples of each coral species, confirming that corals associate with specific microbiota. Profiles were also conserved among all three species of Acropora within each location, suggesting that closely related corals of the same genus harbor similar bacterial types. Bacterial community profiles of A. millepora at Orpheus Island were consistent in samples collected throughout the year, indicating a stable community despite temporal changes. However, DGGE and T-RFLP profiles differed on corals from different reefs. Nonmetric multidimensional scaling of T-RFLP profiles showed that samples grouped according to location rather than coral species. Although similar sequences were retrieved from clone libraries of corals at both Magnetic and Orpheus Island, differences in the relative dominant bacterial ribotypes within the libraries drive bacterial community structure at different geographical locations. These results indicate certain bacterial groups associated specifically with corals, but the dominant bacterial genera differ between geographically-spaced corals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.