The role of inland waters for the global carbon cycle is now recognized and evidence increasingly suggests that stream ecosystems disproportionately contribute to the carbon cycle. Understanding the dynamics and drivers of stream water partial pressure of CO 2 (pCO 2 ) and CO 2 evasion fluxes from streams to the atmosphere is imperative for assessing the role of climate change on the carbon cycle in stream ecosystems. Monitoring pCO 2 over 3 years, we here report on the seasonal, diurnal, and event-driven dynamics of pCO 2 in the hyporheic zone and stream water of an Alpine stream and assess possible drivers of these dynamics. Our findings suggest that both catchment-derived CO 2 delivered by shallow groundwater into the stream and in-stream respiration continuously build up pCO 2 in the hyporheic zone. Depending on stream water temperature and assumedly on primary production (inferred from photosynthetically active radiation), hyporheic CO 2 contributes to stream water pCO 2 and ultimately to CO 2 outgassing to the atmosphere. Diurnal patterns of stream water pCO 2 increasingly built up during extended base flow and streambed-scouring storms caused the collapse of these diurnal patterns. Post storm recovery of the diurnal pCO 2 patterns was generally rapid. Our findings suggest that decreasing gas exchange velocity related to receding discharge drives recovery dynamics. We found that average CO 2 outgassing fluxes during night exceeded those during day by up to 1.8 times. Our study highlights temperature and hydrology-key components of climate change-as major drivers of pCO 2 dynamics in Alpine streams. They also underscore the necessity to consider day-night differences in CO 2 outgassing fluxes to properly establish carbon budgets and regional estimates of CO 2 outgassing to the atmosphere.
Lakes in the Alps represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well studied, less knowledge is available on large-scale patterns essential to general understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic zone of 54 oligotrophic lakes in the montane region of the Alps (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bythotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bythotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness, as was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes.
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.
Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multitrophic communities and pulse-type disturbances, like heatwaves, is largely missing.We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, | 3055 VAD et al.
Climate change-related heatwaves are major recent threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resilience (resistance and recovery) to extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through immigration of better adapted taxa. However, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, are largely missing. We performed an experimental mesocosm study with alpine lake plankton to test whether a dispersal event from natural lakes prior to a simulated heatwave could increase resistance and recovery of local communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated dispersal of organisms from lower (microorganisms) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs that in turn caused mortality. Heating thus resulted in weaker top-down control and a subsequent shift to bottom-heavy food webs. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, dispersal of microorganism enhanced biomass recovery at the level of phytoplankton, thereby providing evidence for spatial insurance. The different response of trophic groups may be related to the timing of dispersal, which happened under strongly monopolized resource conditions by zooplankton, creating limited opportunity for competitors to establish. At the same time, the heatwave released phytoplankton from grazing pressure and increased nutrient recycling, which may have facilitated the establishment of new phytoplankton taxa. Our findings clearly show that even a short heatwave can strongly alter energy flow in aquatic ecosystems. Although dispersal can enhance community resilience, the strength of its buffering effects depends on the trophic level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.