We present an overview of recent investigations of photopolymerizable nanocomposite photonic materials in which, thanks to their high degree of material selectivity, recorded volume gratings possess high refractive index modulation amplitude and high mechanical/thermal stability at the same time, providing versatile applications in light and neutron optics. We discuss the mechanism of grating formation in holographically exposed nanocomposite materials, based on a model of the photopolymerization-driven mutual diffusion of monomer and nanoparticles. Experimental inspection of the recorded grating’s morphology by various physicochemical and optical methods is described. We then outline the holographic recording properties of volume gratings recorded in photopolymerizable nanocomposite materials consisting of inorganic/organic nanoparticles and monomers having various photopolymerization mechanisms. Finally, we show two examples of our holographic applications, holographic digital data storage and slow-neutron beam control.
We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200 m. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.