Patients suffering from severe psychiatric disorders have a higher all-cause mortality than the general population [1-3], and this excess mortality further leads to a shorter life span expectancy by 10-25 years [1, 2]. The underlying causes of this excess mortality are not clearly established, but cardiovascular diseases and lifestyle factors such as diabetes, obesity, smoking, and alcohol and drug
Femoral blood concentrations are usually used in postmortem toxicology to assess possible toxic effects of drugs. This includes QT-prolongation and other cardiac dysrhythmia, which could have been the cause of death. However, blood concentration is only a surrogate for the active site concentration, and therefore cardiac tissue concentration may provide a more accurate toxicological interpretation. Thus, cardiac tissue and femoral and cardiac blood concentrations were examined for eight frequently used QT-prolonging drugs (QTD) and their metabolites in a mentally ill population. In total, 180 cases were included from the Danish autopsy-based forensic study SURVIVE. The concentrations were analyzed using ultra-performance liquid chromatography coupled with tandem mass spectrometry utilizing stable isotopically labeled internal standards. The results showed that the cardiac tissue concentrations were significantly higher compared to femoral and cardiac blood concentrations, with two exceptions. The median cardiac tissue-to-femoral blood concentration ratio (Kb) ranged from 2.2 (venlafaxine) to 15 (nortriptyline). The inter-individual fold difference between the minimum and maximum Kb ranged from 2.6-fold (Z-hydroxynortriptyline) to 61 (venlafaxine). For 12 compounds, postmortem redistribution appeared to be minimal, whereas four compounds displayed some degree of postmortem redistribution. Citalopram and quetiapine were selected for in-depth analysis of the relation between the toxicological interpretation and femoral blood/cardiac tissue concentrations. Within this dataset, citalopram displayed a wide overlap in cardiac tissue concentrations (~50%) between non-toxic and toxic citalopram cases, as estimated from femoral blood concentrations. In contrast, quetiapine displayed no overlap in cardiac tissue concentrations between non-toxic and toxic quetiapine cases based on femoral blood concentrations. The implication of the citalopram finding is that possible intoxications can be overlooked when only considering femoral blood concentrations. Based on the present findings, non-toxic cardiac tissue 10th-90th percentile concentration ranges were estimated for citalopram (0.93-4.4 mg/kg) and quetiapine (0.0073-0.60 mg/kg).
QT-prolonging compounds present a treatment risk in mentally ill patients. Knowledge of the concentration in the heart compared with blood is necessary to assess the cardiac toxicity of QT-prolonging compounds. To address this issue, this article presents a validated analytical method for the quantification of 16 QT-prolonging drugs (QTD) and metabolites in postmortem whole blood and postmortem cardiac tissue. Samples were prepared by protein precipitation and quantified using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Deuterated internal standards were used. Validation results showed that the bias was ±15% and precision was ≤15% for all compounds in both matrices. The recovery ranged from 78.8 to 127.4%, and the matrix effect ranged from 61.0 to 128.7% across both matrices. The limit of detection and the lower limit of quantification were below the therapeutic concentrations of the prescription drugs. No noteworthy degradation during storage of the extracts was detected. The method was applied in five authentic cases of mentally ill patients. In conclusion, an analytical method was successfully developed and validated for the quantification of QTD in postmortem whole blood and cardiac tissue. To the best of the authors' knowledge, this article presents the first fully validated method for quantification of QTD in cardiac tissue.
Methadone-related poisoning has been found to be the leading and increasing cause of death among intoxication cases in several countries. Aside from respiratory depression, methadone is known to cause QT-prolongation, which may lead to sudden cardiac death. Concentrations in heart tissue should be more accurate for estimating cardiotoxic effects. The aim of this study was to investigate whether the effect of methadone on the QT-interval could be simulated and whether the concentrations in heart tissues allowed for better prediction of the Bazett corrected QT-interval (QTcB). A predictive performance study was conducted using the simulation platform Cardiac Safety Simulator to mimic five literature studies using their described study conditions. Both free and total plasma and heart concentrations were investigated using two different in silico models: the O'Hara-Rudy (ORD) model and the 10 Tusscher (TNNP) model. The results showed that the QTcB of methadone was best predicted either with total plasma using the TNNP model or with free plasma using the ORD model. The ORD model was highly sensitive to the total heart concentrations, resulting in overprediction of the QTcB. The TNNP model also overpredicted the QTcB, but to a lesser degree than the ORD model. Furthermore, due to a low baseline QTcB, the ORD model underpredicted the QTcB for both the free plasma and free heart concentrations. In conclusion, it is possible to simulate the cardiac effects of methadone, yet several elements influence the approach uncertainty including but not limited to biophysically details model of cardiac electrophysiology, exposure data, and input parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.