Spectral interferometry is employed to fully characterize amplitude and phase of propagating plasmons that are transmitted through silver nanowires in the form of ultrashort pulses. For nanowire diameters below 100 nm, the plasmon group velocity is found to decrease drastically in accordance with the theory of adiabatic focusing. Furthermore, the dependence of the plasmon group velocity on the local nanowire environment is demonstrated. Our findings are of relevance for the design and implementation of nanoplasmonic signal processing and in view of coherent control applications.
We present general analytic solutions for optical coherent control of electromagnetic energy propagation in plasmonic nanostructures. Propagating modes are excited with tightly focused ultrashort laser pulses that are shaped in amplitude, phase, and polarization (ellipticity and orientation angle). We decouple the interplay between two main mechanisms which are essential for the control of local near-fields. First, the amplitudes and the phase difference of two laser pulse polarization components are used to guide linear flux to a desired spatial position. Second, temporal compression of the near-field at the target location is achieved using the remaining free laser pulse parameter to flatten the local spectral phase. The resulting enhancement of nonlinear signals from this intuitive analytic two-step process is compared to and confirmed by the results of an iterative adaptive learning loop in which an evolutionary algorithm performs a global optimization. Thus, we gain detailed insight into why a certain complex laser pulse shape leads to a particular control target. This analytic approach may also be useful in a number of other coherent control scenarios.
We experimentally demonstrate synthesis and in situ analysis of multimode plasmonic excitations in two-wire transmission lines supporting a symmetric and an antisymmetric eigenmode. To this end we irradiate an incoupling antenna with a diffraction-limited excitation spot exploiting a polarization- and position-dependent excitation efficiency. Modal analysis is performed by recording the far-field emission of two mode-specific spatially separated emission spots at the far end of the transmission line. To illustrate the power of the approach we selectively determine the group velocities of symmetric and antisymmetric contributions of a multimode ultrafast plasmon pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.